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ABSTRACT

I present a modified form of the Eggleton, Faulkner, and Flannery approx-

imation to Fermi-Dirac integrals that substantially reduces the non-relativistic

fitting errors. This new approximation has been incorporated into FreeEOS

(http://freeeos.sourceforge.net/), a software package for calculating the equation of

state using an efficient free-energy minimization technique that is suitable for physi-

cal conditions in stellar interiors.

Subject headings: equation of state — stellar interiors — stellar evolution

1. Introduction

FreeEOS is a software package for calculating the equation of state (hereafter, EOS) using

an efficient free-energy minimization technique that is suitable for physical conditions in stellar

interiors. This paper is the first in a series detailing various aspects of the FreeEOS implementation.

Here, the approximations for the Fermi-Dirac integrals are presented.

Eggleton, Faulkner, and Flannery (1973, hereafter EFF) published an important paper on the

EOS for stellar material that included an approximation for Fermi-Dirac integrals for all degen-

eracies and temperatures. This approximation, which has seen wide-spread use in stellar-interior

calculations, has been slightly modified by Pols et al., 1995 (hereafter PTEH) to avoid some sig-

nificance loss in the entropy approximation, and we refer to this collected work as the EFF ap-

proximation. The chief advantages of this approximation are the following: it is mathematically

continuous; it can be rapidly evaluated with reasonable precision; and it gives thermodynamically

consistent results for all degeneracies and temperatures.

I present in this paper an improvement to the EFF approximation that preserves these ad-

vantages while giving substantially improved accuracy for the important non-relativistic case as

illustrated by a number of different FreeEOS calculations.
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2. Approximation to Pe

I derive in this section an approximation form for Pe, the pressure associated with an ideal

gas of free electrons. We focus on Pe here because other thermodynamic functions for ideal free

electrons can be derived from Pe by well-known thermodynamic relationships (see Sect. 4). Except

for the new non-relativistic result at the end of this section, the material presented here has also

been covered by EFF.

From equation (24.99) of Cox and Giuli (1968, hereafter CG) and equation (21) of EFF, we

have the following result:

λ3
c

8πmec2
Pe ≡ P?(η, β) =

2
√

2

3
β5/2[F3/2(η, β) + (1/2)βF5/2(η, β)], (1)

where the Compton wavelength is defined by λc ≡ h/(mec), η is a degeneracy parameter, β ≡
kT/(mec

2), and Fk(η, β) are Fermi-Dirac integrals defined by

Fk(η, β) ≡
∫

∞

0

xk[1 + (1/2)βx]1/2dx

exp(x − η) + 1
(2)

(see eq. (24.97) of CG).

From equations (24.257), (24.271), and (24.207) of CG, we find the following general form of

expansions for P?:

P? ' β5/2 exp(η)
∑

m,n=0

d(1)
m,n exp(mη)βn (η ¿ −1, β ¿ 1), (3)

P? ' β4 exp(η)
∑

m,n=0

d(2)
m,n exp(mη)β−n (η ¿ −1, β À 1), (4)

P? ' (ηβ)5/2
∑

m,n=0

d(3)
m,nη−2m(ηβ)n (η À 1, ηβ ¿ 1), (5)

and

P? ' (ηβ)4
∑

m,n=0

d(4)
m,nη−2m(ηβ)−n (η À 1, ηβ À 1), (6)

where d
(k)
m,n are well-known numerical coefficients. Following EFF, high-order terms in ln(β) for

equation (4) and in ln(ηβ) for equation (6) have been ignored. Furthermore, if we define the fitting

variables f and g by

η ≡ 2
√

1 + f + ln

√
1 + f − 1√
1 + f + 1

(7)

and

g ≡ β
√

1 + f, (8)

then the approximation form,

P? ' f

1 + f
g5/2(1 + g)3/2

∑M−1
m=0

∑N−1
n=0 P̂m,nfmgn

(1 + f)M−1(1 + g)N−1
, (9)
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reduces to the form of the limiting approximations given by equations (3) through (6) for the four

limits (f ¿ 1, g ¿ 1); (f ¿ 1, g À 1); (f À 1, g ¿ 1); and (f À 1, g À 1).

EFF determined the coefficients P̂m,n of equation (9) (see their eq. [22]) through the method

of least squares. The resulting fits are useful for all values of f and g, but of course there are fitting

errors even at the limits, and in particular the non-relativistic limit. To improve the accuracy of

the fit close to this limit, I have used (with kNR = 1) the following generalized approximation form:

P? ' kNRPNR
? +

f

1 + f
g5/2(1 + g)3/2

∑M−1
m=0

∑N−1
n=kNR

P̂m,nfmgn

(1 + f)M−1(1 + g)N−1
, (10)

where the non-relativistic limit of P? is defined by

PNR
? ≡ 2

√
2

3

(1 + g)3/2

(1 + g)N−1
β5/2F3/2(η), (11)

and F3/2(η) ≡ F3/2(η, 0). kNR is a control variable that is either set to 0 or 1. kNR = 0 (where, for

example, eq. [10] reduces to eq. [9]) corresponds to the case where the non-relativistic component

has not been separated, and kNR = 1 corresponds to the case when the non-relativistic component

of the approximation has been separated.

The form of PNR
? has been carefully chosen to mimic the g-dependence of the n = 0 terms of

equation (9). This means for kNR = 1 the sum over n in equation (10) can start at n = 1, and for

n ≥ 1 the P̂m,n coefficients determined by the method of least squares using either kNR = 0 or 1 are

numerically quite similar to each other. In practice, P NR
? is approximated using the Cody-Thacher

(1967) approximation for F3/2(η). For kNR = 1 and g ¿ 1, the second term of equation (10)

becomes negligible relative to the first so the fitting errors close to this limit (and also for solar

conditions) approach the errors of the Cody-Thacher approximation which are smaller than 1 part

in 108 (see Fig. 1 where I have compared results from the Cody-Thacher approximation and precise

numerical integration).

3. Other Fermi-Dirac Integrals

A complete EOS requires calculation of ne, se, and ue, the number, entropy, and internal

energy per unit volume of ideal free electrons. From equation (24.98) of CG and equation (1) of

EFF we have the following result:

λ3
c

8π
ne ≡ %?(η, β) =

√
2 β3/2[F1/2(η, β) + βF3/2(η, β)]. (12)

Furthermore, to reduce numerical significance loss when calculating se at high degeneracy (see also

Appendix A in PTEH), we calculate the auxiliary thermodynamic quantity Q? defined by

Q? ≡ β
∂P?(η, β)

∂β
− 2

√
1 + f

∂P?(η, β)

∂η
. (13)
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The entropy and internal energy of the free electrons may be calculated from %? and Q? using

se

nek
≡ s?(η, β) =

Q?

β%?
+ 2

√
1 + f − η =

Q?

β%?
+ ln

[
(1 +

√
1 + f )2

f

]
(14)

and
λ3

c

8πmec2
ue ≡ u?(η, β) = Q? + 2g%? − P?. (15)

(See eqs. [A4] and [A5] of PTEH with T in those equations replaced by β ≡ kT/(mec
2) to be

consistent with the notation of the rest of the PTEH paper.)

4. Thermodynamically Consistent Approximations

Our adopted approximation forms for %? and Q? are

%? ' kNR%NR
? +

f

1 + f
g3/2(1 + g)3/2

∑M
m=0

∑N
n=kNR

%̂m,nfmgn

(1 + f)M (1 + g)N
(16)

and

Q? ' kNRQNR
? +

f

(1 + f)2
g5/2(1 + g)3/2

∑M
m=0

∑N
n=kNR

Q̂m,nfmgn

(1 + f)M (1 + g)N
. (17)

These approximation forms generalize equation (15) of EFF and equation (A3) of PTEH and allow

us to separate out the non-relativistic component (kNR = 1) or not (kNR = 0). The index range for

the sums in these approximations is determined by the index range for the sums in equation (10)

and the relationships for %̂m,n and Q̂m,n which we derive later (see eqs. [23] and [24]).

An alternative equation for P? that is exactly equivalent to equation (10) is the following:

P? ' kNRPNR
? +

f

1 + f
g5/2(1 + g)3/2

∑M
m=0

∑N
n=kNR

P̂ ′
m,nfmgn

(1 + f)M (1 + g)N
, (18)

where PNR
? is given by equation (11), and

P̂ ′
m,n = P̂m,n + P̂m−1,n + P̂m,n−1 + P̂m−1,n−1. (19)

The P? approximation form given by equation (18) is the same order as the approximations for %?

and Q? given by equations (16) and (17) so it is more convenient to use in an EOS calculation than

equation (10) which is used for the fit.

To assure thermodynamic consistency with P? we must have (see eq. [26] of EFF)

%? ≡ 1

β

∂P?(η, β)

∂η
. (20)
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When this equation and equation (13) are used in conjunction with equation (10) to specify the

right-hand sides of equations (16) and (17) the following results are obtained:

%NR
? ≡ 1

β

∂PNR
? (η, β)

∂η
=

PNR
?

β

[
F ′

3/2(η)

F3/2(η)
+

5/2 − N

2

g

1 + g

f

(1 + f)3/2

]
, (21)

QNR
? ≡ β

∂PNR
? (η, β)

∂β
− 2

√
1 + f

∂PNR
? (η, β)

∂η

= PNR
?

[
5/2 −

2
√

1 + f F ′

3/2(η)

F3/2(η)
+

5/2 − N

1 + f

g

1 + g

]
, (22)

%̂m,n = (m + 1)P̂m,n + [5/4 + n/2 + (m − M)]P̂m−1,n

+ (m + 1)P̂m,n−1 + [2 + (n − N)/2 + (m − M)]P̂m−1,n−1, (23)

and

Q̂m,n = (1/2 − 2m + n)P̂m,n + [5/2 − 2(2m − M) + n]P̂m−1,n

+ [2 − 2m + (n − N)]P̂m,n−1 + [4 − 2(2m − M) + (n − N)]P̂m−1,n−1

− 2(m − M − 1)P̂m−2,n − 2(m − M − 1)P̂m−2,n−1. (24)

Furthermore, it is straightforward to show these relationships and the preceding definitions satisfy

the following well-known thermodynamic relationships:

ne =
1

kT

∂Pe(η, β)

∂η
, (25)

se

nek
≡ ue + Pe

nekT
− η, (26)

and

ue =
β∂Pe(η, β)

∂β
− Pe. (27)

In sum, the coefficients P̂m,n determined by the method of least squares (see below) and equa-

tions (1), (10), (12), (14) – (19), and (21) – (24) yield a thermodynamically consistent set of

approximations for Pe, ne, se, and ue.

5. Least-Squares Fitting Procedure

I determined the P̂m,n coefficients of the approximation form for P? given in equation (10) using

the method of least squares implemented with a singular-value decomposition technique based on

the LAPACK dgesvx routine (see Anderson, et al. 1999). For the results reported here, it was
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not necessary to edit out any of the singular values (i.e., this particular least-squares problem was

well-conditioned, see discussion in Chapter 14.3 of Press et al, 1986).

I determined the values of P? that were fitted using equations (1) and (2) and numerical

integration of the appropriate Fermi-Dirac integrals. Those integrations were performed with a

4-point Gauss quadrature method that bisects the integration range a sufficient number of times

to assure relative errors smaller than of 1 part in 109.

A number of different options were used for the least-squares fits reported in Section 7. I used

two grids of f and g points for the fits; the original 8 × 7 grid given in section III of EFF for the

ranges −10.61 ≤ ln f ≤ 7.82 and −7 ≤ ln g ≤ 5, and a much more extensive 61× 61 equally spaced

grid over the ranges −15 ≤ ln f ≤ 15 and −15 ≤ ln g ≤ 15. I used two weighting schemes for the

least-squares fits. For the kNR = 0 case, I adopted the original EFF weighting scheme with a weight

equal to P−2
? . These results should be largely equivalent to an unweighted non-linear least-squares

fit of ln P?. For the kNR = 1 case (with separated non-relativistic component), I adopted a weight

equal to min(104P−2
? , |P? − PNR

? |−2). For large g, PNR
? is negligible relative to P?, and this weight

approaches P−2
? . For small g, |P?−PNR

? |−2 becomes large (because the relative differences between

the Cody-Thacher approximation used to calculate P NR
? and the precise numerical integration used

to calculate P? are less than 10−8, see Fig. 1), and the weight reduces to the limiting 104P−2
? value.

The factor of 104 used in this limiting value is a good compromise that reduces the residuals in the

important low-g region without substantially increasing the residuals in the high-g region.

6. The FreeEOS Equation of State

Some of the following results require EOS calculations which are supplied by the FreeEOS

code which has been made publically available at http://freeeos.sourceforge.net/ under the GNU

General Public License (GPL). A full description of the FreeEOS code is in preparation (Irwin et

al. 2004) so we will only summarize its principal characteristics here.

The EOS is calculated using an equilibrium-constant approach to minimize the Helmholtz

free-energy. For realistic abundance mixtures, this approach greatly reduces the number of linear

equations that must be solved per iteration so that the solution can be rapidly obtained. This

speed makes it practical to call the EOS directly from the stellar-interior code without introducing

the errors associated with interpolating EOS tables (Cassisi & Irwin 2004, see also Dorman, Irwin,

& Pedersen 1991).

The equilibrium-constant approach gives numerical solutions of high quality with thermody-

namic consistency which is typically better than 12 decimal digits. Intercomparison of results on

different floating-point platforms also confirms there are typically 12 decimal digits of numerical

precision or better in the FreeEOS results.

The equilibrium-constant approach allows great flexibility in the choice of free-energy model.
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The present calculations use the “EOS1” option suite of FreeEOS which includes the following

components: arbitrarily relativistic and degenerate free electrons (using results from the present

work); excited electronic states; a Planck-Larkin occupation probability (Rogers 1986); a complete

complement of ro-vibrational energy levels for the ground electronic state of H2 (Irwin, 1987) and

H+
2 ; a pressure-ionization occupation probability formulation similar to that of Mihalas, Däppen, &

Hummer (1988); the exchange effect for arbitrarily relativistic and degenerate electrons (Kapusta,

1989 and Kovetz, Lamb, & Van Horn 1972); and the Coulomb effect. The Coulomb effect is treated

with the Debye-Hückel approximation in the weak coupling limit and an approximation (PTEH) of

the multicomponent combination of the one-component plasma result (DeWitt, Slattery, & Chabrier

1996) in the strong-coupling limit. A spline fit is used to interpolate between the weak and strong

coupling limits. The limits of the intermediate coupling region and the size of the interaction radii

that characterize the pressure-ionization occupation probability are adjusted to fit the OPAL EOS

tables distributed at ftp://www-phys.llnl.gov/pub/opal/eos/.

7. Results and Discussion

Figure 2 shows representative stellar-interior model loci in f and g (the degeneracy and rel-

ativity parameters defined by eqs.[7] and [8]) in order to give the following results some context.

The f ,g loci were determined from a FreeEOS calculation based on the run of ρ, T , and abundance

(~ε) values taken directly from the models. The principal (well-known) results illustrated here are

that relativistic corrections are beginning to be important for advanced stages of evolution, and

degeneracy effects are strong for lower main sequence models and the cores of advanced-evolution

models. Also, there is a substantial decrease of degeneracy and relativistic effects caused by the

helium core flash that drives the rapid changes between the red-giant-tip model and the clump-giant

model.

I determined a set of P̂m,n coefficients using a least-squares fit with the original 8 × 7 grid

of EFF fitting points, kNR = 0 (unseparated non-relativistic component), and M, N = 3. The

corresponding thermodynamically consistent P̂ ′
m,n, ρ̂m,n, and Q̂m,n coefficients were determined

using equations (19), (23), and (24). The rounded results were identical to the appropriate data

taken from Table 2 and 5 in EFF and Table A1 in PTEH, thus simultaneously verifying the

present and previous methods of determining the fitted coefficients and the corresponding set of

thermodynamically consistent coefficients. In addition, we found for these low-order results, that

the fitting residuals were changed very little by fitting on the 61 × 61 grid. However, that larger

grid did prove essential for determining reliable high-order results.

Figure 3 illustrates fitting residuals for the original EFF P̂m,n coefficients and P̂m,n coefficients

(see Tables 1, 2, and 3) determined with the present least-squares technique for the 61×61 grid using

a separated non-relativistic component (kNR = 1) for M, N = 3, M, N = 5, and M, N = 8. Thanks

to the high-precision of the Cody-Thacher approximation (see Figure 1) used to calculate P NR
? ,

fitting with a separated non-relativistic component gives much better accuracy than the original
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EFF results for low g values while the maximum fitting errors for intermediate and high g values

remain essentially identical. Also, low-order results already have good accuracy, and convergence

is reliable (although somewhat slow) as the order of the fit is increased.

Figure 4 illustrates FreeEOS results for the important solar case. The overall minimum of

Γ1 near the outer boundary corresponds to the combined hydrogen and first helium ionization

zone, and the secondary minimum of Γ1 slightly deeper in the model corresponds to the second

helium ionization zone. EOS errors due to Fermi-Dirac integral approximations drop profoundly

right near the outer boundary because very few free electrons exist in the outermost part to the

model where hydrogen is not ionized. Throughout the model the EOS errors due to the original

EFF approximation are already roughly an order of magnitude smaller than known errors in the

inferred solar sound speed (see Figure 1 of Basu et al. 2003). However, the present kNR = 1

approximations of the same order do much better with errors typically reduced by 2 orders of

magnitude or more compared to the original EFF results and 3 orders of magnitude or more

compared to the observational errors. Thus, the present lowest-order fitting coefficients from Table 1

should serve even the most exacting solar pulsational frequency calculations.

Results (not illustrated) for other stellar models are similar to the solar case with the present

kNR = 1; M, N = 3 approximation resulting in EOS errors that are typically improved over the

original EFF approximation by at least two orders of magnitude for main-sequence models and one

order of magnitude for advanced evolutionary models.

8. Conclusion

I have presented in this paper an improvement to the EFF approximation for Fermi-Dirac in-

tegrals that greatly increases the accuracy in the non-relativistic case. This approximation has been

implemented as part of the FreeEOS code (distributed under the GPL at http://freeeos.sourceforge.net)

for calculating the EOS for stellar-interior conditions. A comparison with precise numerical inte-

gration results for the solar case shows that the EOS errors due to the present lowest-order ap-

proximation (see fitting coefficients of Table 1) are roughly 2 orders of magnitude smaller than the

EOS errors due to the original EFF approximation and 3 orders of magnitude smaller than typical

observational errors associated with structure inversions of solar pulsational frequency data. Thus,

the present lowest-order approximation should be suitable for all foreseeable stellar-interior and

pulsational calculation needs, and higher-order approximations based on the coefficients given in

Tables 2 and 3 should be reserved for future needs that are not currently anticipated.

I thank Don VandenBerg for providing some representative model calculations using a prelim-

inary version of the FreeEOS code; Forrest Rogers for drawing my attention to a public-domain

routine developed at Lawrence Livermore National Laboratory for precise numerical integration

of Fermi-Dirac integrals; and Richard Stallman, Linus Torvalds, and many other programmers
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for the Gnu/Linux computer operating system that made it practical to develop the FreeEOS

code. The figures of this paper have been generated with the PLplot scientific plotting package

(http://www.plplot.org).
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Fig. 1.— A comparison of Pe results calculated with the Cody-Thacher approximation and the

results of precise (see text) numerical integration in the non-relativistic limit. The degeneracy

parameter f is defined by equation (7).

Fig. 2.— A comparison of the loci of model stellar interiors as a function of the degeneracy and

relativity parameters f and g that are defined by equations (7) and (8). The models were calculated

for solar metallicity using the University of Victoria stellar-interior code and a preliminary version

of FreeEOS. The model loci corresponding to main sequence models of 0.1, 0.3, and 1.0 M¯ and

models of 1.0 M¯ evolved to the tip of the red-giant branch and to the initial clump-giant phase

(zero-age horizontal branch of solar metallicity) are respectively labelled “0.1”, “0.3”, “1.0”, “RGT”,

and “CG” .

Fig. 3.— Fitting residuals in Pe as a function of the degeneracy and relativity parameters f and g

that are defined by equations (7) and (8).

Fig. 4.— EOS results for a solar model specified as the (fixed) run of ρ, T , and abundance (~ε)

as a function of relative radius r/R within the model. The first adiabatic exponent is defined by

Γ1 ≡ ∂ ln P (ρ, s,~ε)/∂ ln ρ where s is the entropy per unit mass. ∆ ln P and ∆ ln v2
s are the relative

change in calculated total pressure and square of the adiabatic sound speed for various Fermi-Dirac

integral calculations. For the second and third panels, the dotted line corresponds to the difference

between the original EFF kNR = 0; M, N = 3 results and precise (see text) numerical integration

results while the solid line corresponds to the difference between kNR = 1; M, N = 3 results of the

present work and precise numerical integration results.
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Table 1. P̂m,n for kNR = 1; M, N = 3

m

n 0 1 2

1 5.5051486 9.1814586 3.3509116

2 3.6945576 5.1656731 1.3336029
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Table 2. P̂m,n for kNR = 1; M, N = 5

m

n 0 1 2 3 4

1 10.1292483 38.2616936 53.9322152 33.2523591 7.6188636

2 17.0862052 61.9601529 83.0404668 48.4264382 10.1598500

3 12.9298674 45.2012106 57.6788896 31.6885718 6.0008022

4 3.6944790 12.5145345 15.2593039 7.9029001 1.3333607
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