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ABSTRACT

This paper describes an efficient method for minimizing the free energy. The im-

plementation of this method is central to FreeEOS (http://freeeos.sourceforge.net/), a

software package for calculating the equation of state for physical conditions in stellar

interiors.

Subject headings: free-energy minimization — equation of state — stellar interiors —

stellar evolution

1. Introduction

FreeEOS (http://freeeos.sourceforge.net/) is a software package for calculating the equation

of state (hereafter, EOS) for stellar conditions. Paper I (Irwin 2004) in this series described the

high-quality Fermi-Dirac integral approximations used in the FreeEOS implementation. Here for

the second paper in this series, I present an efficient method based on equilibrium constants for

minimizing the various user-selected free-energy models available for FreeEOS. The method is

a straightforward extension of the equilibrium-constant approach used for calculating the EOS

for stellar atmospheres that accounts fully for non-ideal effects for stellar-interior conditions in a

thermodynamically consistent way.

For a given Helmholtz free-energy model, chemical equilibrium is traditionally obtained for

detailed EOS calculations such as those of Mihalas, Däppen, & Hummer 1988 (hereafter, MDH) by

adjusting the number densities of the various species in such a way that the free energy is minimized

subject to the usual constraints of abundance conservation and charge neutrality. The present

technique satisfies the same equations but reformulates them in terms of equilibrium constants.

This greatly reduces the number of variables (the so-called auxiliary variables of the technique)

that need to be adjusted to find chemical equilibrium. The result is a FreeEOS implementation

which is so efficient that it can be easily be calculated on a low-end PC. (The FreeEOS code was

originally developed on a Pentium-133.)

The remainder of this paper is organized as follows: Section 2 presents, in a convenient notation,

the constraint equations that must be satisfied by an EOS calculation; Section 3 shows that the
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equilibrium-constant approach for minimizing the free energy yields thermodynamically consistent

results; Section 4 presents the general formula for equilibrium constants; Section 5 gives a general

discussion of the auxiliary variables that must be known in order to calculate non-ideal corrections to

the equilibrium constants; Section 6 describes how the EOS is solved with the equilibrium-constant

approach; Section 7 gives results and discussion, while Section 8 concludes.

2. The Constraint Equations

An EOS must satisfy abundance conservation and charge neutrality constraints. An example

of such constraints (where for illustrative purposes I ignore all species other than free electrons and

the more important hydrogen and helium species) is as follows:

2N(H+
2 ) + 2N(H2) + N(H) + N(H+) = MN0 X(H)/A(H), (1)

N(He) + N(He+) + N(He++) = MN0 X(He)/A(He), (2)

and

Ne − N(H+
2 ) − N(H+) − N(He+) − 2N(He++) = 0. (3)

The symbols in these constraint equations have the following meanings: N0 is Avogadro’s number;

all other N symbols stand for the number of particles of the specified type within the volume V ; M

is the mass within the volume; while the X and A symbols respectively stand for the abundance by

weight and atomic weight of the element of specified type. From the charge neutrality constraint

given by equation (3) every positive ion has associated with it sufficient free electrons to neutralize

its charge. Thus, the right-hand sides of equations (1) and (2) are the mass of the particular

element (including bound electrons and associated free electrons that neutralize the charge of the

positive ion forms of the element) within the volume divided by the mass per particle of the neutral

monatomic form of the element. These right-hand sides therefore reduce to the number of nuclei

(whether bound into molecules or not) of the given species in the volume, and are therefore equal

to the corresponding left-hand sides of equations (1) and (2).

I generalize the above notation to a large number of different species made up of many elements

as follows: for arbitrary abundance mixtures of kelem elements, the kelem abundance conservation

constraint equations and the charge neutrality constraint equation are given by
∑

σ

NσCσj = MN0 εj (4)

(see also MDH, eqs. [20], [22], and [23]); where j = 1, . . . , kelem +1; Nσ is the number of particles of

species type σ in the volume, and σ ranges over all species including electrons. The special index

j = kelem + 1 refers to the charge neutrality equation with a formal εkelem+1 ≡ 0. Otherwise, for the

element indexed by j ≤ kelem

εj ≡ Xj/Aj ≡ νj

∑

k

Xk/Ak ≡ νj/
∑

k

νkAk, (5)
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where Xj (≡ νjAj/
∑

k νkAk) is the relative abundance by mass, νj (≡ [Xj/Aj ]/
∑

k[Xk/Ak]) is the

relative abundance by number, and Aj is the atomic weight.

The Cσj are stoichiometric coefficients that keep track of how many times species of type σ

contributes to the constraint equation of type j. For j ≤ kelem, Cσj is the number of atoms of the

jth reference element contained by species σ. For j = e ≡ kelem + 1, Cσe is the negative charge

(or the negative of the positive charge) of the species σ. The stoichiometric coefficients are easy

to determine for each species included in the EOS. For example, from equations (1) and (3) the

stoichiometric coefficients of H+
2 are 2 for the hydrogen conservation equation, −1 for the charge

neutrality equation and zero for all other constraint equations, and the stoichiometric coefficients of

the free electron are 1 for the charge neutrality equation and zero for all other constraint equations.

3. Thermodynamic Consistency

For free energy F , temperature, T , and arbitrary ~N , which is not necessarily in chemical

equilibrium, the following well-known definitions apply:

P (T, V, ~N) ≡ −∂F (T, V, ~N)/∂V, (6)

S(T, V, ~N) ≡ −∂F (T, V, ~N)/∂T, (7)

and

U(T, V, ~N) ≡ F (T, V, ~N) + TS(T, V, ~N), (8)

where P is the pressure, S and U are the entropy and internal energy in V , and ~N is the number

vector with components Nσ (see eq. [4]). These equations satisfy Maxwell’s relations so all thermo-

dynamic relations are guaranteed to hold true at fixed ~N . This is what is meant by thermodynamic

consistency. When ~N is not fixed but instead determined from chemical equilibrium constraints

implicitly as a function of T , V , M , and ~ε it turns out that thermodynamic consistency still holds

(see related discussion in Sect. 9.12 of Cox & Giuli 1968). The purpose of this section is to present

a derivation of this fundamental result for the present equilibrium-constant method of minimizing

the free energy.

The derivation requires a notation that distinguishes between the parts of ~N which refer to

reference and non-reference species. The reference part is designated ~Nr and consists of the kelem+1

reference species which are chosen to be the neutral monatomic form of each element and the free

electron. The order of the reference species is the same order as the corresponding constraint

equations with the free electron corresponding to the charge neutrality equation. The remaining

non-reference part of ~N is designated ~Nnr. Straightforward manipulation of the constraint equa-

tions (eq. [4]) allows expressing the reference numbers as a function of abundance, mass, and the

non-reference numbers;
~Nr = ~Nr(~ε, M, ~Nnr). (9)
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The partial derivatives (for j = 1, . . . , kelem + 1 and σ = kelem + 2, . . . , kspec with kspec defined to

be the number of different species) are given by

∂Nr
j (~ε, M, ~Nnr)/∂Nnr

σ = −Cσj . (10)

Note these partial derivatives are greatly simplified by the choice of reference species which have

stoichiometric coefficients of unity with respect to their associated constraint equations and zero

with respect to the remaining constraint equations.

The condition of chemical equilibrium implies that ~Nnr must be varied to minimize

F (T, V,~ε, M, ~Nnr) = F [T, V, ~Nr(~ε, M, ~Nnr), ~Nnr]. (11)

At that minimum

∂F (T, V,~ε, M, ~Nnr)/∂Nnr
σ = 0. (12)

Applying the chain rule to this equation and using equation (10) gives (for σ = kelem +2, . . . , kspec)

µσ =

kelem+1∑

j=1

Cσjµj (13)

(see also MDH, eqs. [13]–[16] and [21]), where the chemical potentials are defined in the usual way

(for k = 1, . . . , kspec) by

µk(T, V, ~N) ≡ ∂F (T, V, ~N)/∂Nk. (14)

Equation (13) is a fundamental relationship between chemical potentials of non-reference and ref-

erence species at chemical equilibrium where the free energy is minimized. I transform this rela-

tionship in Section 4 to derive the relationship between number densities and equilibrium constants

that is the basis of the present method of minimizing the free energy. Here I use equation (13) to

prove thermodynamic consistency at chemical equilibrium.

At chemical equilibrium ~Nnr
eq is an implicit function of T , V , ~ε, and M ; and the equilibrium

value of the free energy is defined by

Feq(T, V,~ε, M) ≡ F (T, V, ~Neq)

≡ F{T, V, ~Nr[~ε, M, ~Nnr
eq (T, V,~ε, M)], ~Nnr

eq (T, V,~ε, M)}. (15)
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Applying the chain rule to the last version of this equation and using equations (10), (13), and (14)

gives

∂Feq(T, V,~ε, M)/∂V = ∂F (T, V, ~Neq)/∂V

−

kelem+1∑

j=1

µj

kspec∑

σ=kelem+2

Cσj∂Neq(T, V,~ε, M)σ/∂V

+

kspec∑

σ=kelem+2

µσ∂Neq(T, V,~ε, M)σ/∂V

= ∂F (T, V, ~Neq)/∂V. (16)

Similarly,

∂Feq(T, V,~ε, M)/∂T = ∂F (T, V, ~Neq)/∂T. (17)

These two equations show that to satisfy equation (13) the partial derivative of the free energy

with respect to V with ~N constrained to equilibrium values that vary with V must be equal to the

partial derivative of the free energy with respect to V with ~N constrained to equilibrium values

that are held constant, and similarly for the partial derivatives with respect to T . Furthermore,

equations (6), (7), (8), (16), and (17) imply

Peq(T, V,~ε, M) ≡ P (T, V, ~Neq)

= −∂F (T, V, ~Neq)/∂V

= −∂Feq(T, V,~ε, M)/∂V , (18)

Seq(T, V,~ε, M) ≡ S(T, V, ~Neq)

= −∂F (T, V, ~Neq)/∂T

= −∂Feq(T, V,~ε, M)/∂T , (19)

and

Ueq(T, V,~ε, M) ≡ U(T, V, ~Neq)

= F (T, V, ~Neq) + TS(T, V, ~Neq)

≡ Feq(T, V,~ε, M) + TSeq(T, V,~ε, M). (20)

For fixed chemical composition and mass, equations (18) through (20) show that the relation-

ships between Feq, Peq, Seq, and Ueq are identical to the relationships between F , P , S, and U

given by equations (6) through (8). Thus, Maxwell’s relations are satisfied and thermodynamic

consistency prevails not only for arbitrary fixed ~N , but also for chemical equilibrium (i.e., when

eq. [13] is satisfied) where ~N becomes an implicit function of T , V , ~ε, and M . Since the equilibrium

constants (see Sect. 4) are derived from equation (13), the FreeEOS implementation automatically

provides thermodynamically consistent results limited only by the usual round-off errors expected

for double-precision (64-bit word length) floating-point calculations.
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4. The Equilibrium Constants

The so-called equilibrium constants that are the basis of the present method of minimizing the

free energy are most easily expressed for a free energy model that is divided between known ideal

and modelled non-ideal components;

F (T, V, ~N) ≡ F i(T, V, ~N) + Fni(T, V, ~N). (21)

The ideal part of the free energy is made up of a number of known components;

F i(T, V, ~N) ≡ FR + FE + FT + FL. (22)

The ideal free-energy component due to radiation is

FR ≡ −
1

3
aT 4V, (23)

where a ≡ 4σSB/c is the radiation-pressure constant, σSB is the Stefan-Boltzmann constant, and c

is the speed of light. This is an important component of the free energy because it strongly affects

a number of thermodynamic quantities at low density and high temperature, but it has no effect

on equilibrium constants because it is independent of number densities.

The ideal free-energy component due to free electrons is

FE ≡ −PeV + ηnekTV, (24)

where the electron pressure is Pe, the electron number density is ne ≡ Ne/V , and η is a well-

known degeneracy parameter (see, e.g., eqs. [24.98] through [24.100] of Cox & Giuli 1968). All

other components of F i are independent of Ne. Thus, from equations (22) and (24) and the

thermodynamic relationship,

ne =
1

kT

Pe(η, β)

∂η
(25)

(see eq. [25] of Paper I), it directly follows that

µi
e ≡ ∂F i(T, V, ~N)/∂Ne = ∂FE(T, V, Ne)/∂Ne = kTη. (26)

Because the approximations for Pe and ne (see Paper I) used in the FreeEOS implementation are

designed to be thermodynamically consistent with each other, equations (25) and (26) hold exactly

in that implementation limited only by the usual round-off errors expected for double-precision

floating-point calculations.

The ideal free-energy component due to translational degrees of freedom of non-electron species

is

FT = −kTV
∑

σ 6=e

nσ[1 − ln(nσ) + ln(qT
σ )], (27)
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where σ indexes the chemical species other than the free electron, nσ ≡ Nσ/V is the number

density,

qT
σ = λσ

−3 exp(−c2E1σ/T ) (28)

is the translational partition function per unit volume,

λσ = (2πmσkT/h2)−1/2 (29)

is the de Broglie wavelength, mσ is the mass, E1σ is the ground state energy (with units of inverse

wavelength), and c2 ≡ hc/k is the second radiation constant.

The ideal free-energy component due to internal degrees of freedom of lower energy levels of

non-electron species is

FL = −kTV
∑

σ 6=e

nσ ln(QL
σ ), (30)

where

QL
σ =

∑

i=1

giσ exp[−c2(Eiσ − E1σ)/T ] (31)

is the ideal internal partition function of the lower energy levels with giσ the statistical weight, and

Eiσ the energy of the ith level. The lower energy levels include at least the ground state and any

additional levels that are too low in energy to be well-approximated by the Rydberg formula. The

non-ideal corrections to the effect of the lower energy levels and the entirety of the effect of the

Rydberg energy levels on the free energy depend on the adopted model for F ni.

All components of F i other than FT and FL are independent of Nσ. Thus, equations (22),

(27), and (30) imply the ideal chemical potential for non-electron species is

µi
σ ≡ ∂F i(T, V, ~N)/∂Nσ = [FT (T, V, ~N) + FL(T, V, ~N)]/∂Nσ = kT [ln(nσ) − ln(qT

σ QL
σ )]. (32)

Equation (13) is a necessary condition that chemical equilibrium has been obtained and the

free energy has been minimized. Combination of that result with equations (26) and (32) yields

ln nσ = ln Kσ +

kelem∑

j=1

Cσj ln nj (33)

for σ = kelem + 2, . . . , kspec, where the equilibrium constant is

ln Kσ = ln(qT
σ QL

σ ) −

kelem∑

j=1

Cσj ln(qT
j QL

j ) + Cσe η + ∆ ln Kσ, (34)

its non-ideal correction is

∆ ln Kσ = −


µni

σ −

kelem+1∑

j=1

Cσjµ
ni
j


 /(kT ), (35)
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and the non-ideal components of the chemical potential are (for k = 1, . . . , kspec)

µni
k ≡ ∂Fni(T, V, ~N)/∂Nk. (36)

Equation (33) constitutes the fundamental relationship between the number density of non-

reference species, associated equilibrium constants, and the number density of reference species that

is the basis (see Sect. 6) for the solution of the EOS in the FreeEOS implementation. This equation

is equivalent to both the Saha ionization equation for ions and dissociation equation for molecules

corrected in a thermodynamically consistent way for non-ideal effects. Thus, it also can be adopted

as the basis of the EOS calculation used for physical conditions in stellar atmospheres, e.g., the EOS

calculation in the synthetic spectrum application, SSynth (http://sourceforge.net/projects/ssynth).

5. Auxiliary Variables

Section 6 shows that the EOS solution follows directly from equations (4) and (33); the equi-

librium constants as defined by equation (34); and the fundamental independent variables of the

FreeEOS calculation which are f , T , and ~ε. For example, the degeneracy parameter η that appears

in equation (34) is defined by

η ≡ ln f + 2
[√

1 + f − ln
(
1 +

√
1 + f

)]
. (37)

Furthermore, the number density of elections ne that appears in the charge neutrality equation is

approximated in a thermodynamically consistent way (see Paper I) as a function of f and g, where

g ≡ β
√

1 + f ≡
kT

mec2

√
1 + f. (38)

The equilibrium constants that are required by the EOS solution depend on physical data, T ,

and ∆ ln ~K. Furthermore, ∆ ln ~K depends (in general) on physical data, f , T , and a set of auxiliary

variables which depend on the adopted model for F ni. For example, if the FreeEOS implementation

of the Coulomb effect is included in F ni, ∆ ln ~K depends (in part) on the two auxiliary variables,

ΣC
0 ≡

∑

Π

nΠ (39)

and

ΣC
2 ≡

∑

Π

nΠZΠ
2, (40)

where the Π index ranges over all positive ions, and ZΠ is the charge of the ion. I have programmed

a large choice of components for F ni in the FreeEOS implementation, and later papers in this

series will give implementation details of each component (such as the Coulomb effect) as well as

the associated auxiliary variables. In general, as in the two example auxiliary variables above,
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auxiliary variables depend on the individual species number densities which depend in turn on the

solution of the EOS. Thus, an iterative procedure (Sect. 6) must be used to determine the auxiliary

variables.

Fortunately, the user of the FreeEOS code does not have to worry about any of these specifics

because I have been able to design the code so that the number and definition of the auxiliary

variables is automatically selected depending on the chosen option suite. It turns out that the

number of required auxiliary variables ranges from none for the “PTEH” option suite that mimics

the Pols et al. 1995 (hereafter, PTEH) non-ideal free-energy model to 15 for the “EOS1” option

suite (described in Paper I) that is specially designed to fit the detailed OPAL results (Rogers &

Nayfonov 2002, hereafter EOS2001).

6. Solution of the EOS

For the case where the equilibrium constants are independent of auxiliary variables, the so-

lution of the EOS is straightforward. ne is already known in terms of the independent variables

of the FreeEOS implementation. Thus, substitution of the equilibrium relations (eq. [33]) into the

abundance conservation and charge neutrality constraint equation (eq. [4]) results in kelem equa-

tions to be solved for the kelem unknowns ~nr/ρ, where ~nr is the number density of reference species

and ρ ≡ M/V is the mass density. For the physical conditions found in cool stellar atmospheres,

the EOS solution is complicated by cross-terms between the equations which are caused by het-

eronuclear molecules such as CO. However, for stellar-interior conditions this aspect of the EOS

greatly simplifies. At temperatures above 106 K the FreeEOS implementation ignores molecular

formation altogether. In this case, ~nr/ρ can be directly obtained from the abundance conservation

constraint equations with the required number of floating-point operations proportional to kspec. ρ

is then found from the charge neutrality constraint equation. This gives ~nr and (via the equilib-

rium constants and eq. [33]) ~nnr, the number density of non-reference species. Knowledge of ~nr and

~nnrdetermines the remainder of the EOS solution. First and second partial derivatives of the free

energy are evaluated to machine precision using analytical expressions derived from the chain rule,

and first- and second-order thermodynamic functions can be obtained starting with the definitions

given by equations (18) through (20).

At temperatures below 106 K the solution of the present EOS is only slightly more complicated.

The FreeEOS implementation uses the approximation that all molecules can be ignored except for

H2 and H+
2 . In this case, it is possible to formally solve the hydrogen number constraint equation

(eq. [1]) for

ρ = {2[K(H+
2 ) + K(H2)]n(H)2 + [1 + K(H+)]n(H)}/[N0ε(H)]. (41)

Substitution of this result into the charge neutrality equation gives a quadratic equation in n(H),

{K(H+
2 ) + 2[K(H+

2 ) + K(H2)]Σ
+}n(H)2 + {K(H+) + [1 + K(H+)]Σ+}n(H) = ne, (42)
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where

Σ+ =
∑

σ

nσZσ/[ρN0ε(H)], (43)

and the sum is to be taken over all non-hydrogen positive ions. This sum can be determined from

abundance conservation constraint equations for each element similar to equation (2). Once the

solution of the quadratic has been obtained, the density can be determined from equation (41)

and all remaining reference number densities can be obtained from the abundance conservation

constraint equations. The remaining steps to determine the first- and second-order thermodynamic

functions follow the procedure discussed above for the no-molecules case.

So far, I have discussed only the case where the equilibrium constants are independent of

auxiliary variables. If the equilibrium constants do depend on auxiliary variables, then the EOS

solution is more complicated. Given an “input” set of auxiliary variables the EOS solution proceeds

as before including a calculation of all number densities. These in turn are used to calculate an

“output” set of auxiliary variables, and iteration is required to achieve consistency between the two

sets of auxiliary variables. Typically, for stellar models or EOS table generation, physical condi-

tions do not change very much between successive calculations of the EOS. Under these conditions

the previous solution of the EOS provides a Taylor series approximation for the initial values of

the auxiliary variables for the next solution of the EOS. However, if the physical conditions have

changed too much or if it is the first call of the FreeEOS routine, the implementation makes a

preliminary solution that uses the PTEH form of free-energy model. This preliminary EOS can be

solved without auxiliary-variable iteration and the results used to make preliminary estimates of

the auxiliary variables associated with the required free-energy model. The FreeEOS implementa-

tion employs a Newton-Raphson procedure to iterate the auxiliary variables to consistency. The

Jacobian calculation requires the inner product of the partial derivatives of the output auxiliary

variables with respect to the equilibrium constants and the partial derivatives of the equilibrium

constants with respect to the input auxiliary variables. Thus, the required number of floating-

point calculations per iteration is roughly proportional to keqk
2
aux, where keq ≡ (kspec − kelem − 1)

is the number of equilibrium constants and kaux is the number of auxiliary variables. Once the

Newton-Raphson iteration to determine the auxiliary variables has converged, the remaining steps

to determine the first- and second-order thermodynamic functions follow the procedure discussed

for the case where no auxiliary variables need to be determined except that certain of the required

derivatives are determined using the chain rule and the Jacobian of the linear system of equations

evaluated for the converged Newton-Raphson solution.

So far, I have assumed in the discussion that the user has specified f , T , and ~ε, the fundamental

independent variables of FreeEOS. However, the FreeEOS user also has the option of selecting a

different set of independent variables where f is replaced in the set by a “match” variable which is

either P , Pgas, or ρ. Such options are implemented by an “outer” Newton-Raphson iteration to find

the f value that is consistent with the match variable, and the previously described “inner” Newton-

Raphson iteration to find a self-consistent set of auxiliary variables. The termination algorithm

used for both iterations is to perform one additional iteration beyond where agreement is obtained
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to 1 part in 107. Because of the quadratic convergence of the Newton-Raphson technique, this

algorithm should ideally yield numerical precision of order 1 part in 1014, but the actual numerical

precision obtained (see Sect. 7.1) can be somewhat worse than this because of numerical significance

loss.

7. Results and Discussion

To give the following results and discussion some context, Figure 1 shows the loci of several

stellar interior models on the density-temperature plane. The high-density, low-temperature region

bounded by the diagonal jagged line on the left, and the log T = 6 isotherm at the top is excluded

for all FreeEOS computations for the reasons discussed in Section 7.4.

7.1. Numerical Quality of Results

The FreeEOS implementation of the above equilibrium-constant technique for minimizing the

free energy requires knowledge of large numbers of analytical first and second partial derivatives

of the modelled free-energy expression. I have comprehensively checked (with the free eos test ap-

plication that is documented at http://freeeos.sourceforge.net/documentation.html) the derivation

and programming of these required analytical derivatives by comparing with centred numerical dif-

ferences with optimal step sizes. As expected for such differences, the size of the disagreement with

analytical derivatives is proportional to the square of the step size for large step sizes and for small

step size, where significance loss in the differences becomes an important factor, the disagreement

is proportional to the inverse of the step size. By varying the step size in a systematic way, one

can find the optimal intermediate step size where the centred difference approach yields the most

error-free (typically with relative errors of 1 part in 109 for double-precision calculations) compar-

isons with the analytical derivatives. Indeed, comparing with numerical differences this way has

proved to be a powerful tool for removing all errors (to this level) in the derivation or programming

of the partial derivatives in the FreeEOS implementation because such errors give a characteristic

signature of a constant difference with numerical difference results over a range of different step

sizes near the optimal value.

A further measure of the numerical quality of the FreeEOS implementation can be obtained by

comparing results calculated on different Fortran/hardware platforms. Different Fortran compilers

(or even different degrees of optimization for the same compiler) do floating-point calculations in a

variety of orders. Furthermore, different hardware platforms have different floating-point represen-

tations and different procedures for rounding results. The result is that rounding errors propagate in

quite different ways on different Fortran/hardware platforms for the same Fortran source code, and

these cross-platform differences are a measure of the typical amount of rounding error propagation

for the code. The stable releases of the FreeEOS source code (see http://freeeos.sourceforge.net/)
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have been compiled by users for a wide variety of Fortran/hardware platforms, and the reported

test results are typically consistent to 1 part in 1012 or better. That is satisfactory numerical quality

for an EOS calculation that necessarily requires a large number of double-precision floating-point

calculations (with associated propagation of numerical errors) to obtain results.

The good agreement between the analytical partial derivatives and corresponding numerical

differences and the good agreement between results for various platforms are both indications of the

high degree of numerical quality of the FreeEOS results for the free-energy models that have been

implemented. Nevertheless, I emphasize that the actual errors in the FreeEOS results compared

to physical reality depends very much on the realism of the free-energy model that is being used

(see discussion in Sect. 7.4), and in general those actual errors are much larger than the numerical

errors I have been discussing in this subsection.

7.2. Thermodynamic Consistency

As an additional check of the thermodynamic consistency and numerical quality of the FreeEOS

results, I have evaluated the thermodynamic inconsistency index,

α ≡ ln

{
∂s(ρ, T,~ε)

∂ρ

[
∂ρ(P, T,~ε)/∂T

ρ2∂ρ(P, T,~ε)/∂P

]−1
}

, (44)

where s(ρ, T,~ε) is the entropy per unit mass in chemical equilibrium.

Equations (18) through (20) satisfy Maxwell’s relations at chemical equilibrium so that α

should be zero for error-free EOS calculations done with the equilibrium-constant approach that

have been converged to exact chemical equilibrium. In actual calculations α will differ from zero

if the relevant analytical derivatives are improperly derived or programmed or there is some other

inconsistency with the modelled free-energy.

For example, Figure 2 illustrates the systematic variations of α from zero caused by approxi-

mating the Fermi-Dirac integrals using thermodynamically consistent coefficients that are rounded

to six figures beyond the decimal like the coefficients published in Table 5 of Eggleton, Faulkner, &

Flannery (1973, hereafter EFF) and Table A1 of PTEH. The rounding causes little inconsistency

at high temperatures and low densities because radiation dominates the free-energy model there,

and at low temperatures because ionization is low and electrons are not important. However, the

rounding of the coefficients does have a discernible effect where electrons are important. Even in

those regions, the thermodynamic inconsistency caused by this small degree of rounding is actually

perfectly acceptable, but I like to remove it to make sure there are no other more subtle sources

of inconsistencies. Such removal is straightforward; the FreeEOS normally (except for the special

rounded case shown in Fig. 2) uses the relations in Paper I to calculate the thermodynamically

consistent coefficients to the numerical precision allowed by double-precision floating-point calcula-

tions. Such calculations may be based on the original P̂nm coefficients of Table 3 of EFF, or, better
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yet, the improved P̂nm coefficients taken from Table 1 of Paper I. The substantially improved

thermodynamic consistency that results from removing the rounding is obvious in the comparison

between Figures 2 and 3, and I ascribe the remaining non-systematic deviations of α from zero to

numerical noise in the FreeEOS calculation.

The high degree of thermodynamic consistency normally exhibited by the FreeEOS implemen-

tation is a useful indication that the programmed analytical derivatives and all other aspects of

the implementation are consistent with the adopted free energy model to roughly 1 part in 1011 or

better. That level of numerical inconsistency is satisfactory for an EOS calculation which necessar-

ily has many double-precision floating-point calculations (with associated propagation of numerical

errors) and is another indication of the high numerical quality of FreeEOS results. Nevertheless, a

similar remark applies here as in Section 7.1; the physical realism of the free-energy model deter-

mines the actual errors of the FreeEOS results compared to physical reality, and those actual errors

(see Sect. 7.4) are much larger than the minute degree of thermodynamic inconsistency exhibited

in Figure 3.

7.3. FreeEOS Computation Efficiency

The most realistic (and complex) “EOS1” option suite for FreeEOS has 15 associated auxiliary

variables. Since that number is much smaller than the typical number of variables being iterated

in a traditional free-energy minimization for realistic abundance mixtures, a FreeEOS calculation

is quite efficient compared to other free-energy minimization procedures. For example, a typical

FreeEOS computation with the ‘EOS1” option suite and mixture of 20 elements in the abundance

mix only requires 0.01 sec to complete on a 600MHz PC.

7.4. Validity of the FreeEOS Results

To give some context to the following discussion of the validity of FreeEOS results, refer back

to Figure 1 which shows the loci of several stellar interior models on the density-temperature

plane. The strength of interactions between particles increases as the mean distance between

particles decreases or the density increases. Also, at lower temperature the particles are less ionized

and therefore larger so that the so-called “pressure-ionization effects” which are difficult to model

reliably and which account for deviations from a model of interacting point charges become more

important. The net result is EOS calculations tend to be the least reliable for extreme lower main-

sequence envelope conditions such as those that occur in the 0.1-M¯ model in the figure, and the

free-energy models available for FreeEOS are no exceptions to this general rule.

The OPAL EOS2001 results give reasonable agreement with the observed solar Γ1 values deter-

mined as a function of radial distance from the solar centre by inversion techniques but, like other

equations of state, are expected to have substantially larger errors for extreme lower main sequence
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envelope conditions (EOS2001). Nevertheless, EOS2001 results are probably the best available,

and therefore, the realism of the various free-energy models available for FreeEOS is judged by how

closely the FreeEOS results match those from the EOS2001 tabulations. (EOS2001 results required

a supercomputer to calculate so are only available in tabular form with the associated inherent

concerns about interpolation errors [Dorman, Irwin, & Pedersen 1991] and the fixed and truncated

abundance mixes.)

The EOS1 option suite gives the most realistic free-energy model currently programmed for

FreeEOS. This free-energy model has many components included in it (see summary in Paper I)

specifically designed to yield the best agreement with tabulated (not interpolated) EOS2001 results

when the EOS2001 abundance mix is used for the FreeEOS calculation. Good preliminary results

have already been obtained in comparison to EOS2001 for solar conditions (see Sect. 7.4.1). How-

ever, the EOS1 free-energy model for pressure ionization currently just uses a hard-sphere potential

following the MDH work, and because of this limitation there are islands in the density-temperature

plane at high densities and low temperatures characteristic of the physical conditions of extremely

low-mass stars where the FreeEOS calculation with EOS1 option suite fails to converge, or gives

non-physical results.

To completely avoid these problem areas for the FreeEOS results reported in the remainder of

this paper, I have imposed a calculation limit for log T < 6 of

log ρlim = log ρ5 + (3/2) log(T/105), (45)

for log ρ5 = 3.3. (Note all units in this paper are SI unless specifically stated otherwise.) The actual

limit used for this paper is quantized (see Fig. 1) by the log ρ and log T step sizes used for the EOS

tabulations for the later figures in this paper. (Note the FreeEOS implementation is fast enough to

be called directly from a stellar-interior code so pre-computed tables of results are not necessary in

that case.) This calculation limit roughly corresponds to a 0.1-M¯ model and can also be viewed as

the approximate limit of validity for FreeEOS calculations with the EOS1 option suite. However,

this limit is just a preliminary result, and for the next release of FreeEOS, I plan to make some

pressure-ionization adjustments to see if it is possible to push the EOS1 calculational limit slightly

higher than log ρ5 = 3.3 which would allow models at the main-sequence hydrogen-burning limit

near 0.07 M¯ to be calculated with the EOS1 option suite of FreeEOS.

7.4.1. Comparison of FreeEOS and OPAL results for a Solar Model

I compare FreeEOS results with two distinct sets of OPAL calculations for the solar case. I

use the term “EOS1995” to designate the older set of OPAL calculations. Rogers, Swenson, and

Iglesias (1996) describe these calculations, and the results are stored in files named Neos. . . that are

currently accessible at ftp://www-phys.llnl.gov/pub/opal/eos. The “readme” file at that location

indicates the last update of these tables was in 1995, hence their designation. I have previously used

the term “EOS2001” to designate the modern set of OPAL calculations. The EOS2001 reference
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describes these calculations, and the results are stored in files named IEOS. . . that are currently

accessible at http://www-phys.llnl.gov/Research/OPAL/Download/. The EOS2001 reference dis-

cusses the improvements between the EOS1995 and EOS2001 calculations; these primarily concern

the electron treatment (done relativistically for the first time in EOS2001) and the molecular treat-

ment.

Figure 4 shows the comparison between solar results for EOS1995 and EOS2001. No interpo-

lation is used in the comparison. Instead, for each (ρ, T ) point in a solar-interior model, the nearest

common (ρ, T ) point is selected from the OPAL EOS1995 and EOS2001 tables, and thermodynamic

quantities directly compared (with residuals taken in the sense of EOS1995 minus EOS2001). For

these figures the comparisons were made between the (X = 0.6, Y = 0.38, and Z = 0.02) EOS1995

and EOS2001 tables, but results tabulated for EOS1995 and EOS2001 for other abundances show

similar differences as well.

The ∆Γ1 result from Figure 4 is similar to Figure 8 of the EOS2001 reference for r/R < 0.95.

For this region of the model almost all the differences between the two OPAL calculations are due

to the improved relativistic treatment of electrons in the EOS2001 calculation. However, note the

∆Γ1 residuals from Figure 8 of the EOS2001 reference for r/R > 0.95 are an order of magnitude

smaller than the corresponding residuals in Figure 4. I have no explanation for this discrepancy. I

believe the present comparisons between EOS1995 and EOS2001 for the solar case are reliable since

I have directly confirmed that the present plots reflect the actual EOS1995 and EOS2001 tables.

Figure 5 is identical to Figure 4 except that the independent variable is log T (r) rather than

r/R. This way of plotting the residuals shows more details for the outer region of the model.

(Comparison of the two figures shows r/R = 0.95 roughly corresponds to log T (r) ' 5.4.) Clearly,

for log T (r) < 5.4 there are substantial (by the standards of helioseismology) differences between

the two generations of OPAL calculations. These difference are a surprise, however, since in this

region both molecular formation and relativistic corrections are negligible, and the known changes

in the treatment of these two effects between the EOS1995 and EOS2001 calculations cannot be

the cause of these discrepancies. Therefore, I feel it is important for the OPAL team to investigate

these differences between their two results more thoroughly.

The pressure-ionization model used for the EOS1 option suite for FreeEOS, has coefficients

(the interaction radii which characterize the MDH-like occupation probability formalism) that can

be adjusted to fit more detailed calculations. For FreeEOS–1.1.0, the latest released version of the

code, these coefficients have been adjusted to give a good fit of EOS1995 results from OPAL, an

extension (Rogers 1995) of those results to high densities and low temperatures using the same

code that produced the EOS1995 results, and EOS results from Saumon, Chabrier, & Van Horn

(1995). The “EOS1995” option-suite used for the FreeEOS–1.1.0 comparison with EOS1995 results

is identical to the EOS1 option suite except for the following changes that were introduced to mimic

known deficiencies in the EOS1995 calculation: H+
2 was ignored, all levels with principal quantum

number greater than 4 were ignored, and relativistic corrections were ignored. (The last of these
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changes is the most important one for solar conditions.) Also, as a matter of convenience the well-

known radiation terms are dropped from the FreeEOS EOS1995 option suite rather than added

to the OPAL EOS1995 tabulated results. Figure 6 shows the resulting small residuals between

FreeEOS(EOS1995) and EOS1995 for the solar case. Particularly noteworthy is the maximum

residual of 0.0006 in ln P which is more than 5 times smaller than the maximum residual in ln P

between EOS1995 and EOS2001 shown in Figure 5.

Compared to EOS1995, the EOS2001 calculations extend to much higher densities at low

temperatures (in fact almost to the conditions appropriate for a 0.1-M¯ model). Thus, my plan

for the next release of the FreeEOS code is to adjust the pressure-ionization coefficients of the

EOS1 option suite to fit the EOS2001 results throughout its tabulated density, temperature, and

abundance range.

Such a preliminary adjustment has already been made. The resulting pressure-ionization

coefficients are quite different than those used for the EOS1 (and EOS1995) option suites of

FreeEOS–1.1.0, and there is a small but noticeable change in the solar comparisons below log T =

5.4 as a result. In addition for the solar comparison with EOS2001, the full EOS1 option suite

has been used (except for radiation). In particular, H+
2 (whose treatment will be described in

a future paper in this series), principal quantum numbers up to 100, and relativistic corrections

are all included. Figure 7 shows the resulting residuals between FreeEOS(EOS1) (with updated

pressure-ionization coefficients) and EOS2001 in the solar case. For log T > 5.4 (or r/R < 0.95)

the residuals are extremely small just as for the comparison with EOS1995 in Figure 6. In other

words, the relativistic correction that has always been a part of the EOS1 option suite is now well-

matched by the EOS2001 calculation. However, for log T < 5.4 the changes in pressure-ionization

coefficients that have been made since FreeEOS–1.1.0 was released are not sufficient to completely

overcome the differences between EOS1995 and EOS2001. For example, the maximum ln P resid-

ual in Figure 7 is half that in Figure 5 but 2.5 times that in Figure 6. An explanation of why the

EOS2001 result differs from the EOS1995 result for this region should help improve the free-energy

model used by the FreeEOS EOS1 option suite.

8. Conclusions

Because only a relatively small number of auxiliary variables need to be iterated to convergence,

the equilibrium-constant approach for minimizing the free energy is so efficient it can easily be

calculated on a low-end PC. (The FreeEOS code was originally developed on a Pentium-133.)

Also, results from the technique have high numerical quality, and this is also reflected in the large

degree of thermodynamic consistency of the results as seen in Figure 3. Therefore I recommend

consideration of the equilibrium-constant approach for all future EOS implementations that use

the free-energy minimization technique.

The “EOS1” suite of options currently gives the most realistic free-energy model that I
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have programmed as part of the FreeEOS implementation. Figure 7 shows that differences of

FreeEOS(EOS1) and EOS2001 thermodynamic quantities for the solar case are generally smaller

than the corresponding differences between the EOS1995 and EOS2001 OPAL results (shown in

Fig. 5) and differences between thermodynamic functions derived with inversion of helioseismology

data and EOS2001 OPAL results (e.g., Fig. 8 of the EOS2001 reference). Thus, FreeEOS(EOS1)

has a similar degree of realism as EOS2001 at least in the solar case. Furthermore, FreeEOS pro-

vides an ideal EOS platform that for a wide range of physical conditions can be used to explore

numerical effects such as interpolation errors as well as physical effects such as changes in the

adopted abundance mix or free-energy model.

The FreeEOS software is licensed under the GPL and is freely downloadable from

http://freeeos.sourceforge.net/. Two stable releases of the source code have already been made,

and another one is planned for the near future. Further papers in this series describing the FreeEOS

implementation are planned including details of the large variety of free-energy models that are

currently available with the FreeEOS implementation.

I thank Forrest Rogers for many useful discussions and for providing unpublished data; Ben

Dorman and Fritz Swenson for helping to arouse my original interest in the EOS problem for

stellar interiors; Don VandenBerg for providing some representative model calculations using a

preliminary version of the FreeEOS code; and Richard Stallman, Linus Torvalds, and many other

programmers for the GNU/Linux computer operating system and accompanying tools that have

made it practical to develop the FreeEOS code. The figures of this paper have been generated

with the yPlot (http://yplot.sourceforge.net) and PLplot (http://www.plplot.org) scientific plotting

packages.



– 18 –

REFERENCES

Cox, J.P. & Giuli, R.T. 1968, Principles of Stellar Structure (New York: Gordon and Breach)

Dorman, B., Irwin, A.W., & Pedersen, B.B. 1991, ApJ, 381, 228

Eggleton, P.P., Faulkner, J., & Flannery B.P. 1973, A&A, 23, 325 (EFF)

Irwin, A.W. 2004, http://freeeos.sourceforge.net/eff fit.pdf (Paper I)
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Fig. 1.— A comparison of loci of model stellar interiors calculated for solar metallicity. The models

(VandenBerg 1998) were calculated using the University of Victoria stellar-evolution code and a

preliminary version of the EOS1 option suite of FreeEOS. The model loci are indicated by thick

solid lines labelled by ‘0.1”, ‘0.3”, ‘1.0”, ‘RGT”, and ‘CG” to label respectively main sequence

models of 0.1, 0.3, and 1.0 M¯ and models of 1.0 M¯ evolved to the tip of the red-giant branch

and to the initial clump-giant phase (zero-age horizontal branch of solar metallicity). Note the

jagged thin diagonal line near the 0.1-M¯ model continued by the thin horizontal line at log T = 6

corresponds to the current high-density, low-temperature calculational limit of the EOS1 option

suite for FreeEOS (see discussion in Sect. 7.4).

Fig. 2.— The thermodynamic inconsistency index α (eq. [44]) as a function of density and temper-

ature for a special case where I have deliberately introduced small rounding inconsistencies with

the free-energy model (see text). The calculated values of α are quite sensitive to such inconsisten-

cies when they exist. Note the α surface is undefined beyond the calculational limit indicated in

Figure 1. (See also discussion of this calculational limit in Sect. 7.4.)

Fig. 3.— The thermodynamic inconsistency index α (eq. [44]) as a function of density and tem-

perature for the typical case where there are no known inconsistencies between the programming

and free-energy model. Note the α surface is undefined beyond the calculational limit indicated in

Figure 1. (See also discussion of this calculational limit in Sect. 7.4.)

Fig. 4.— A comparison of OPAL EOS1995 and EOS2001 results for the solar case. Γ1 ≡

∂ ln P (ρ, s)/ ln ρ, where s is the entropy per unit mass. The adiabatic sound speed is v2
s ≡ Γ1P/ρ.

The adiabatic temperature gradient is ∇a ≡ (Γ2 − 1)/Γ2 ≡ ∂ ln T (P, s)/∂ ln P . See text for details

of the tabular comparison.

Fig. 5.— Identical to Figure 4 except that the data are plotted as a function of log T (r).

Fig. 6.— Identical to Figure 5 except that the comparison is between FreeEOS(EOS1995) (where

the EOS1995 option suite of FreeEOS has been optimized for the comparison, see text) and the

EOS1995 tabulated results.

Fig. 7.— Identical to Figure 6 except that the comparison is between FreeEOS(EOS1) (with

pressure-ionization coefficients updated to get a better fit of EOS2001, see text) and EOS2001

tabulated results.
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Solar Comparison of EOS1995 versus EOS2001
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Solar Comparison of FreeEOS(EOS1995) versus EOS1995
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Solar Comparison of FreeEOS(EOS1) versus EOS2001
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