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ABSTRACT

This paper describes how the exchange effect is treated in FreeEOS

(http://freeeos.sourceforge.net/), a software package for rapidly calculating the equa-

tion of state for physical conditions in stellar interiors. An approximation has been

derived as a function of degeneracy and temperature for the exchange effect in the

grand canonical partition function representation, a further approximation has been

derived for the transformation of that exchange effect into a free-energy representation

that can be used by FreeEOS, and the effect of exchange is illustrated for physical

conditions appropriate to stellar-interior models.

Subject headings: exchange interaction — approximation of exchange integrals — equa-

tion of state — stellar interiors — stellar evolution

1. Introduction

FreeEOS (http://freeeos.sourceforge.net/) is a software package for rapidly calculating the

equation of state (hereafter, EOS) for stellar conditions, and a series of papers is being prepared

that describe its implementation. Paper I (Irwin 2004a) describes the Fermi-Dirac integral approx-

imations. Paper II (Irwin 2004b) describes the efficient method of solution that delivers thermo-

dynamically consistent results of high numerical quality that are in good agreement with OPAL

EOS2001 (Rogers & Nafanov 2002) results for the solar case. Paper III (Irwin 2005) describes the

implementation of the Coulomb correction.

The purpose of this fourth paper in the series is to present the implementation of the correction

for the exchange effect. This effect depends on the quantum mechanical properties of the total wave

function when electrons (or positrons) are exchanged. (Equivalent quantum mechanical effects exist

for the ions, but these turn out to be negligible because of the much larger mass of the ions.) Even

for the case of no electrostatic repulsion, the anti-symmetrized total wave function of the electrons

tends to decrease the spatial overlap of the probability densities of individual electrons. Because of

this anti-correlation of the individual electrons, the exchange effect causes the total energy to be

decreased in the presence of the electrostatic repulsion, and less pressure is required to confine the
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gas to a particular volume for a given temperature. The exchange effect is typically the 3rd most

important non-ideal effect for stellar-interior conditions (after pressure-ionization and the Coulomb

effect) so an accurate treatment of the effect is important.

The remainder of this paper is organized as follows: Section 2 presents the first-order grand

canonical partition function expression that the FreeEOS implementation uses to describe the effect

of exchange; Section 3 presents approximation forms for the required exchange integrals; Section 4

describes the least-squares fits for the required exchange integrals; Section 5 shows how the exchange

component of the grand canonical partition function result described in Section 2 is transformed

to the exchange component of the free energy; Section 6 summarizes the characteristics of the

FreeEOS calculations of this paper; while Sections 7, 8, and gives 9 give the results, discussion and

conclusions.

2. The Exchange Term in the Grand Canonical Partition Function

The purpose of the present section is to develop the expression for ln ZX , the change in the

natural log of the grand canonical partition function due to first-order exchange. I will develop the

transformation of ln ZX into the required exchange component of the free energy in Section 5.

For the general case of partially degenerate, semirelativistic electrons and positrons, Kapusta

(1989, eq.[5.55]) has given an expression for ln ZX that Heckler (1994) has used for determining

the importance of the exchange effect under a wide variety of astrophysical conditions. In the limit

of no pair production (−ηβ ¿ 1, where η ≡ µe/kT with µe defined as the chemical potential of

the electron and β ≡ kT/(mec
2)) the Kapusta expression (in the SI units that are used throughout

this paper) reduces to

ln ZX(η, β, V ) = ln ZI
X(η, β, V ) + ln ZII

X (η, β, V ); (1)

where

ln ZI
X(η, β, V ) = − V

2πmeh4β

e2

4πε0

∫
X(p, q)N(η, β, p)N(η, β, q) d3p d3q

[E(p) + mec2][E(q) + mec2]
, (2)

ln ZII
X (η, β, V ) = −4π2mecβV

3h4

e2

4πε0

∫
N(η, β, p) d3p

E(p) + mec2
, (3)

N(η, β, p) =

[
exp

(
E(p)

mec2β
− η

)
+ 1

]−1

, (4)

E(p) = (m2
ec

4 + p2c2)1/2 − mec
2, (5)

and

X(p, q) = 1 +
2m2

ec
4

[E(p) − E(q)]2 − c2|~p − ~q|2 . (6)
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Note that −kT ln ZI
X(η, β, V ) is the same as Ωx in the notation of the widely referenced ex-

change treatment of Kovetz, Lamb, & Van Horn (1972, hereafter KLVH). Thus, the present equa-

tion (2) corresponds to KLVH, equation (1). Furthermore, KLVH have defined and investigated

the exchange integrals J and I which simplify the expression for ln ZX .

The J integral is defined by

J ≡ β2(J iJ ii + J iii); (7)

where

J i =
1

β1/2

∫
∞

0

(u1 − 1/u1) dx1

exp(x1 − η) + 1
, (8)

J ii =
1

β1/2

∫
∞

0

exp(x2 − η) ln u2 dx2

[exp(x2 − η) + 1]2
, (9)

J iii =
1

β

∫
∞

0

∫
∞

0

(u1 − u2)(1 − u1u2)

u1u2

ln |(1 − u1u2)/(u1 − u2)| exp(x2 − η) dx1 dx2

[exp(x1 − η) + 1][exp(x2 − η) + 1]2
, (10)

u1 ≡ 1 + βx1 +
√

2βx1 + β2x2
1, (11)

and

u2 ≡ 1 + βx2 +
√

2βx2 + β2x2
2 (12)

(see KLVH, eq. [43]). The non-relativistic limit of the J integral is

JNR = 2β2G(η), (13)

where

G(η) ≡
∫

∞

0

∫
∞

0

ln(x
1/2
1 + x

1/2
2 ) − ln |x1/2

1 − x
1/2
2 |

[exp(x1 − η) + 1][exp(x2 − η) + 1]
dx1dx2 ≡

∫ η

−∞

[F−1/2(η
′)]2dη′ (14)

(see KLVH, eqs. [37] and [38]) with Fk(η) ≡ Fk(η, 0) and the Fermi-Dirac integral of order k defined

by

Fk(η, β) ≡
∫

∞

0

xk[1 + (1/2)βx]1/2dx

exp(x − η) + 1
(15)

(see Cox and Giuli 1968, hereafter CG, eq. [24.97]). The equivalence of the two definitions for

G(η) can be proved by showing the two expressions are identical in the limit of large negative η

(see KLVH eq. [40] and CG eq. [24.47]) and then proving the derivatives of the two expressions

with respect to η are identical using integration by parts on the derivative of the first expression.

The Harwood approximation for G(η) (programmed by D. Harwood in the late 60’s at Lawrence

Livermore and now distributed [see subroutine f psi] as part of FreeEOS) helps to provide a high-

quality approximation for JNR.

The I integral is defined by

I ≡ K2, (16)
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where

K ≡ 2β3/2F1/2(η, β) (17)

(see KLVH, eq. [42]). The non-relativistic limit of the K integral is

KNR ≡ 2β3/2F1/2(η) = (4/3)β3/2F ′

3/2(η). (18)

The analytical derivative of the Cody-Thacher (1967) approximation for F3/2(η) helps to provide

a high-quality approximation for KNR.

Using the above definitions of J and K, equation (2) reduces to

ln ZI
X(η, β, V ) =

4πm3
ec

2V

h4β

e2

4πε0
(J − K2) (19)

(see KLVH eq. [6a]), equation (3) reduces to

ln ZII
X (η, β, V ) = −23/2π2

3

4πm3
ec

2V

h4β

e2

4πε0
β2K, (20)

and equation (1) reduces to

ln ZX(η, β, V ) =
4πm3

ec
2V

h4β

e2

4πε0

(
J − K2 − 23/2π2

3
β2K

)
. (21)

Equation (21) is the fundamental expression used for the exchange treatment in the FreeEOS

implementation, and it relates to other exchange expressions as follows. This equation is a special

case (with pair production ignored) of equation (5.55) from Kapusta (1989). If the term that is

proportional to β2K is dropped, then equation (21) is equivalent to the KLVH expression which is

used both by the Stolzmann & Blöcker (1996) EOS (with the linear-inversion approximation given

by eq. (50) below) and the OPAL (Rogers & Nayfonov 2002) EOS. Finally, the linear-inversion

approximation of the non-relativistic limit of equation (21) is equivalent to equation (17) of DeWitt

(1969).

3. Approximation Forms for the Exchange Integrals

The purpose of the present section is to develop approximation forms for the J and K exchange

integrals that are defined by equations (7) and (17) and which appear in equation (21). Since

EFF-style approximations for Fermi-Dirac integrals have proved to give excellent results even in

low-order (see Paper I and Eggleton, Faulkner, and Flannery 1973, hereafter EFF), I adapt that

approximation method to the present case where the components of the J integral (eqs. [8], [9],

and [10]) have an exponential cutoff in the x1 and x2 integrands like that occurring for Fermi-Dirac

integrals, and the K integral (eq. [17]) is already proportional to a Fermi-Dirac integral. As in
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EFF and Paper I, the approximations are expressed as a function of the f and g fitting parameters

defined implicitly by

η ≡ 2
√

1 + f + ln

√
1 + f − 1√
1 + f + 1

(22)

and

g ≡ β
√

1 + f (23)

with approximate expansions

f(η) ' exp(η)
∑

m=0

f (1)
m exp(mη) (η ¿ −1), (24)

f(η) ' η2
∑

m=0

f (2)
m η−2m (η À 1), (25)

g(η, β) ' β
∑

n=0

g(1)
n exp(nη) (η ¿ −1), (26)

and

g(η, β) ' ηβ
∑

n=0

g(2)
n η−2n (η À 1) (27)

(see EFF eqs.[7] through [10] and note that the EFF T parameter is the same as the present β).

These fitting parameters help to achieve the correct form of results for the approximations to the

J and K integrals in the four limits (η ¿ −1, β ¿ 1); (η À 1, ηβ ¿ 1); (η ¿ −1, β À 1); and

(η À 1, ηβ À 1).

3.1. Approximation form for the J integral

There exist the following general form of expansions (some convergent some asymptotic) in

four different limits for J :

J ' JNR + β3 exp(2η)
∑

m,n=0

j(1)
m,n exp(mη)βn (η ¿ −1, β ¿ 1) (28)

(see eq. [13], KLVH eq. [36], and CG eq. [24.47]);

J ' JNR + (ηβ)3
∑

m,n=0

j(2)
m,nη−2m(ηβ)n (η À 1, ηβ ¿ 1) (29)

(see eq. [13], KLVH eq. [36], and CG eq. [24.38]);

J ' β2 exp(η)
∑

m,n=0

[j(3)
m,n + j ′(3)

m,n ln β − j ′′(3)
m,n β−2 ln2 β] exp(mη)β−n (η ¿ −1, β À 1) (30)

(see KLVH eqs. [25b] and [30] and CG eq. [24.263]); and

J ' (ηβ)2
∑

m,n=0

[j(4)
m,n + j ′(4)

m,n ln(ηβ) − j ′′(4)
m,n η−2 ln η −

j ′′′(4)
m,n (ηβ)−2 ln2(ηβ)]η−2m(ηβ)−n (η À 1, ηβ À 1) (31)
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(see KLVH eqs. [12], [17], [20], and [22]); where j
(k)
m,n, j

′(k)
m,n , j

′′(k)
m,n and j

′′′(k)
m,n are numerical coefficients.

(Note that the KLVH β parameter is the inverse of the present [and CG] β.)

I have adopted the following approximation formula for the J integral:

J ' JNR

(1 + g)N+1
+

f2

(1 + f)2
g3

1 + g

[

∑M
m=0

∑N
n=0 Ĵm,nfmgn

(1 + f)M (1 + g)N
+ ln(1 + g)

∑M ′

m=0

∑N ′

n=0 Ĵ ′
m,nfmgn

(1 + f)M ′(1 + g)N ′
−

ln(1 + f)

(1 + f)

∑M ′′

m=0

∑N ′′

n=0 Ĵ ′′
m,nfmgn

(1 + f)M ′′(1 + g)N ′′
− ln2(1 + g)

(1 + g)2

∑M ′′′

m=0

∑N ′′′

n=0 Ĵ ′′′
m,nfmgn

(1 + f)M ′′′(1 + g)N ′′′

]
. (32)

If the limiting forms for f and g given by equations (24) through (27) are taken into account, then

this approximation formula reduces to the form of equations (28) through (31) in the appropriate

limits. Following Paper I, the JNR term has been kept separate in this approximation formula

because a high-quality approximation (see Sect. 2) exists for it which greatly reduces the fitting

errors of this approximation form in the important non-relativistic limit. The numerical coefficients

Ĵm,n, Ĵ ′
m,n, Ĵ ′′

m,n and Ĵ ′′′
m,n must be determined by fitting precise values of J (see, e.g., Sect. 4).

3.2. Approximation form for the K integral

There exist the following general form of expansions (some convergent some asymptotic) for

K ≡ 2β3/2F1/2(η, β):

K ' KNR + β5/2 exp(η)
∑

m,n=0

k(1)
m,n exp(mη)βn (η ¿ −1, β ¿ 1) (33)

(see eq. (18) and CG eqs. [24.47] and [24.289]);

K ' KNR + (ηβ)5/2
∑

m,n=0

k(2)
m,nη−2m(ηβ)n (η À 1, ηβ ¿ 1) (34)

(see eq. (18) and CG eqs. [24.38] and [24.289]);

K ' β2 exp(η)
∑

m,n=0

[k(3)
m,n − k′(3)

m,nβ−2 ln β] exp(mη)β−n (η ¿ −1, β À 1) (35)

(see CG eqs. [24.236] and [24.265]); and

K ' (ηβ)2
∑

m,n=0

[k(4)
m,n − k′(4)

m,n(ηβ)−2 ln(ηβ)]η−2m(ηβ)−n (η À 1, ηβ À 1) (36)

(see CG eqs. [24.179] and [24.197]); where k
(k)
m,n and k

′(k)
m,n are numerical coefficients.
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I have adopted the following approximation formula for the K integral:

K ' KNR

(1 + g)N+1/2
+

f

1 + f

g5/2

(1 + g)1/2

[∑M
m=0

∑N
n=0 K̂m,nfmgn

(1 + f)M (1 + g)N
−

ln(1 + g)

(1 + g)2

∑M ′

m=0

∑N ′

n=0 K̂ ′
m,nfmgn

(1 + f)M ′(1 + g)N ′

]
. (37)

If the limiting forms for f and g given by equations (24) through (27) are taken into account, then

this approximation formula reduces to the form of equations (33) through (36) in the appropriate

limits. Following Paper I, the KNR term has been kept separate in this approximation formula

because a high-quality approximation (see Sect. 2) exists for it which greatly reduces the fitting

errors of this approximation form in the important non-relativistic limit. The numerical coefficients

K̂m,n and K̂ ′
m,n must be determined by fitting precise values of K (see, e.g., Sect. 4).

4. Least-Squares Fitting Procedure

The least-squares fitting procedure used to determine approximations for the J and K inte-

grals follows the method used in Paper I. The least-squares implementation used a singular-value

decomposition technique based on the LAPACK dgesdd routine (see Anderson, et al. 1999). The

inverses of the smallest singular values were automatically edited to zero (see discussion in Chapter

14.3 of Press et al, 1986) in order to assure a condition number that exceeded 10−10 (i.e., to assure

at least a nominal 6 significant digits in the derived fitting coefficients for these double-precision

[64-bit floating point] results). All fits employed a 61 × 61 equally spaced grid of points over the

ranges −15 ≤ ln f ≤ 15 and −15 ≤ ln g ≤ 15. As in Paper I all numerical integrations required

to determine the values being fitted were performed with a 4-point Gauss quadrature method that

locally bisected the integration range a sufficient number of times to assure relative errors in the

results that were smaller than of 1 part in 109.

4.1. The fit of the J integral

I determined the Ĵm,n, Ĵ ′
m,n, Ĵ ′′

m,n and Ĵ ′′′
m,n coefficients of equation (32) with the least-

squares method described above for a number of different orders. The fitted J integral values

were determined from equation (7) with J i, J ii, and J iii calculated by numerical integration of

equations (8), (9), and (10). In the case of J iii, the transformation,
∫

∞

0

∫
∞

0
f(x1, x2)dx1dx2 =

∫
∞

0

∫ x2

0
[f(x1, x2) + f(x2, x1)]dx1dx2 (38)

was used to avoid the occurrence of singularities of the derivative of the integrand in the middle

of the integration range. The JNR values were determined from a high-quality approximation (see

Sect. 2).
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Following Paper I, I adopted a fitting weight of min(104J−2, [J − JNR]−2). For large g, JNR is

negligible relative to J , and this weight approaches J−2 which is the weight that if uniformly applied

would make the present linear least squares fit of J largely equivalent to an unweighted non-linear

fit of ln J . For small g, (J − JNR)−2 becomes quite large (because the relative differences between

the high-quality approximation used to calculate JNR and the precise numerical integration used

to calculate J are quite small), and the weight reduces to the limiting 104J−2 value. The factor

of 104 used in this limiting value is a good compromise that helps to reduce the residuals in the

important low-g region without substantially increasing the residuals in the high-g region.

4.2. The fit of the K integral

I determined the K̂m,n and K̂ ′
m,n coefficients of equation (37) with the least-squares method

described above. The fitted K integral values were determined from equation (17) with F1/2(η, β)

calculated by numerical integration of equation (15). The KNR values were determined from a

high-quality approximation (see Sect. 2). Following what was done for the fit of the J integral, I

adopted a fitting weight of min(104K−2, [K − KNR]−2).

5. The Exchange Transformation

The purpose of the present section is to develop an approximation for the transformation of

ln ZX , the first-order exchange term in the natural log of the grand canonical partition function

(see eq. [21]), into the corresponding free-energy form. This transformation is necessary for any

free-energy based EOS such as FreeEOS, but is obviously not required for any EOS (such as OPAL)

that is based on the grand canonical partition function.

The free energy, F , and grand canonical partition function, Z, are related by the definitions,

F ( ~N, T, V ) ≡ ~µ · ~N − kT ln Z(~µ, T, V ) (39)

and

Nσ(~µ, T, V ) ≡ kT
∂ ln Z(~µ, T, V )

∂µσ
; (40)

where σ ranges over all species, ~N (with components given by eq. [40]) is the vector of numbers

of each kind of particle in the volume, V , and ~µ is the vector of chemical potentials for each kind

of particle. Definitions (39) and (40) are completely general. Furthermore, in this section I use

the notation that zero subscripts denote quantities where the exchange effect is dropped. Thus,

recalling that η = µe/kT and β = kT/(mec
2),

ln Z(~µ, T, V ) ≡ ln Z0(~µ, T, V ) + ln ZX(η, T, V ) (41)

and

F ( ~N, T, V ) ≡ F0( ~N, T, V ) + FX( ~N, T, V ), (42)
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where ln ZX is determined from equation (21), and FX is the corresponding exchange term in the

free-energy model. Note, the independent variables of the free-energy must be identical with and

without exchange. Therefore, ~N = ~N0 or

Nσ(~µ, T, V ) ≡ kT
∂ ln Z0(~µ, T, V )

∂µσ
+

∂ ln ZX(η, β, V )

∂η
= kT

∂ ln Z0( ~µ0, T, V )

∂µσ
≡ Nσ( ~µ0, T, V ). (43)

The preceding equations imply

FX( ~N, T, V ) = (~µ − ~µ0) · ~N − kT [ln Z0(~µ, T, V ) − ln Z0( ~µ0, T, V ) + ln ZX(η, β, V )]. (44)

Equations (43) and (44) give the transformation between ln ZX and FX in the general case.

Since exact solution of these equations would be computationally expensive, the FreeEOS imple-

mentation employs an approximate solution of these equations based on the assumption that only

the ideal and exchange components of the free energy depend on Ne, the number of free electrons

in V . Under these conditions the electronic part of kT ln Z separates and is given by

ln Ze(η, β, V ) = ln Z0e(η, β, V ) + ln ZX(η, β, V ), (45)

where

kT

V
ln Z0e(η, β, V ) ≡ P0e(η, β) ≡ 16π

√
2

3h3
m4

ec
5β5/2[F3/2(η, β) + (1/2)βF5/2(η, β)] (46)

(CG, eq. [24.99]). Furthermore, equations (43) and (44) reduce to

ne(η, β) ≡ n0e(η, β) +
1

V

∂ ln ZX(η, β, V )

∂η
= n0e(η0, β) (47)

and

FX(Ne, T, V ) = (η − η0)n0e(η0, β)kTV − [P0e(η, β) − P0e(η0, β)]V − kT ln ZX(η, T, V ), (48)

where Ne/V ≡ ne(η, β), and

N0e/V ≡ n0e(η, β) ≡ 1

kT

∂P0e(η, β)

∂η
=

8π
√

2

h3
m3

ec
3β3/2[F1/2(η, β) + βF3/2(η, β)] (49)

(CG, eq. [24.98]). (Note the usual notation is to drop the “0” subscript from P0e and n0e, but this

subscript is used for the special notation of this section to emphasize the relationship between these

quantities and ln Z0e and to distinguish ne [which is related to ln Ze] from n0e.)

The solution of equations (47) and (48) is straightforward. The FreeEOS implementation

employs approximations for the J and K integrals (eqs. [32] and [37]) and thermodynamically

consistent approximations for P0e and n0e (Paper I). These approximations are expressed in terms

of the convenient fitting parameters f and g that are (implicitly) defined by equations (22) and

(23). For the FreeEOS implementation, f0 and g0 are readily available since ln f0 and ln T are the
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independent variables in one mode of the FreeEOS calculation (or in other modes are available at

each stage of an outer iteration to determine ln f0 as a function of either ln ρ or ln P , see Paper II).

Equation (47) is transformed to a form implicitly relating ln f to ln f0 and Newton-Raphson itera-

tion quickly and reliably determines ln f starting with the initial approximation that ln f ≈ ln f0.

FX then follows directly from equation (48). Note, these calculations and the associated correc-

tion to the equilibrium constants given by equation (35) of Paper II are independent of auxiliary

variables and can therefore be calculated outside the auxiliary variable loop (see Paper II) saving

substantial computer time. Also, all partial derivatives of the exchange transformation calculation

are implemented in a consistent way so that thermodynamic consistency in the EOS results is

preserved to the order of one part in 1011 or better (see Fig. 3 of Paper II).

The current approximation for transforming ln ZX to FX is asymptotically correct for low den-

sities which normally correlate with low degeneracy. For those conditions, all non-ideal effects can

be considered small perturbations and equation (44) can be replaced by the lowest-order surviving

term of its Taylor-series expansion in ~µ,

F linear
X (Ne, T, V ) ≡ −kT ln ZX(η0 = µ0e/kT, β, V ). (50)

For these same conditions, the first surviving term of the Taylor-series expansion of equation (48)

in η also yields the same result.

Equation (50) corresponds to the linear-inversion approximation discussed by Perrot & Dharma-

wardana (1984). This approximation is used implicitly by Saumon, Chabrier, and Van Horn (1995),

Stolzmann & Blöcker (1996), and presumably other free-energy based equations of state that in-

clude the exchange effect. Although I have implemented this linear inversion approximation as

an option for FreeEOS to help emulate other free-energy based equations of state, I recommend

instead the FreeEOS option (which is used automatically as part of the EOS1 option suite) of using

the numerical solution of equations (47) and (48) to transform ln ZX to FX . The reason for this

recommendation is because the exchange and other non-ideal effects are not small perturbations

of the EOS for extreme lower-main-sequence conditions (see Sect. 7) in contradiction with the

assumption used to derive the linear inversion approximation.

The recommended FreeEOS pressure-ionization treatment uses the occupation probability for-

mulation of Mihalas, Däppen, & Hummer (1988) (with modified interaction radii to fit the OPAL

results) which is completely independent of Ne. For large degeneracy the recommended Coulomb

treatment (see Paper III) is also independent of Ne. Thus, for these conditions the assumption

underlying the derivation of equations (47) and (48) are satisfied, and the recommended option of

solving these approximate equations to transform ln ZX to FX should therefore yield asymptotically

correct results for large degeneracy.
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6. The FreeEOS Equation of State

Some of the following results require EOS calculations which are supplied by the FreeEOS

code which has been made publically available at http://freeeos.sourceforge.net/ under the GNU

General Public License (GPL). A full description of the FreeEOS code is still in preparation so I

will only summarize its principal characteristics here.

The EOS is calculated using an equilibrium-constant approach to minimize the Helmholtz

free-energy (Paper II). For realistic abundance mixtures, this approach greatly reduces the number

of linear equations that must be solved per iteration so that the solution can be rapidly obtained.

This speed makes it practical to call the EOS directly from the stellar-interior code without intro-

ducing the errors associated with interpolating EOS tables (Dorman, Irwin, & Pedersen 1991). All

calculations are done in double precision (64-bit floating point), and all required partial derivatives

are analytically derived and implemented rather than calculated with numerical differences. This

approach gives numerical solutions of high quality with thermodynamic consistency which is typi-

cally better than 11 decimal digits. Intercomparison of results on different floating-point platforms

also confirms there are typically 11 decimal digits of numerical precision or better in the FreeEOS

results.

The recommended “EOS1” option suite of FreeEOS includes the following components: arbi-

trarily relativistic and degenerate free electrons (Paper I); excited electronic states; a Planck-Larkin

occupation probability (Rogers 1986); a complete complement of ro-vibrational energy levels for

the ground electronic state of H2 (Irwin 1987) and H+
2 ; a pressure-ionization occupation probability

formulation similar to that of Mihalas, Däppen, & Hummer (1988); the exchange effect for arbitrar-

ily relativistic and degenerate electrons (see details below); and the Coulomb effect which is treated

with the Debye-Hückel approximation in the weak coupling limit that is smoothly joined to a good

approximation to liquid multi-component plasma results in the strong-coupling limit (Paper III).

The limits of the Coulomb join region and the size of the interaction radii that characterize the

pressure-ionization occupation probability are adjusted to fit the OPAL EOS tables distributed at

ftp://www-phys.llnl.gov/pub/opal/eos/. In particular, the EOS1 option suite of FreeEOS provides

an excellent fit of OPAL results for solar conditions (Paper II).

The ‘EOS1” option suite for exchange employs second-order (see Sect. 7) approximations for

the J and K integrals in equation (21) to determine ln ZX , and uses a good approximation (eqs. [47]

and [48]) to the non-linear transformation between ln ZX and FX . Other FreeEOS exchange options

investigated in this paper are to drop exchange altogether; use higher-order fits to the J and K

integrals; use series approximations (see details below) for the J and K integrals; use the non-

relativistic limit of equation (21),

ln ZX(η, β, V ) ≈ 4πm3
ec

2V

h4β

e2

4πε0

(
JNR

)
; (51)

or use the linear inversion approximation (eq. [50]) to transform ln ZX to FX .
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FreeEOS implements the option of approximating J and K by series as follows. For η <

ηlim ≡ max(3, 1/[2β]), J is approximated by the first three terms of KLVH equation (36), and K is

approximated by the first two terms of CG equation (24.289). For η > ηlim, J is approximated by

KLVH equation (12), and K is approximated by CG equation (24.179). The A1 and A2 coefficients

used in KLVH equation (12) are defined by

A1 ≡
∫

∞

0

t ln t

exp(t) + 1
dt = 0.4490427560 (52)

and

A2 ≡
∫

∞

0

∫
∞

0
ln

∣∣∣∣
s + t

s − t

∣∣∣∣
ds

exp(s) + 1

dt

exp(t) + 1
= 0.5047526561, (53)

where the numerical values on the right hand sides of these equations are derived by numerical

integration using the technique described in Section 4. These values provide substantially more

precision than the KLVH values of A1 and A2 (see their eqs. [21] and [23]). Note there is also an

error in the sign of the KLVH A2 value which the present value corrects.

7. Results

7.1. Results in f and g

To give the results that are plotted as a function of the degeneracy parameter f (eq. [22]) and

the relativity parameter g (eq. [23]) some context, Figure 1 compares the loci of several stellar-

interior models of solar metallicity as a function of f and g. The border between non-degenerate and

degenerate conditions occurs at log f ≈ 0, and the border between non-relativistic and relativistic

conditions occurs at log g ≈ 0. Thus, this figure illustrates the well-known results that main-

sequence models are non-relativistic, extreme lower-main-sequence model cores are degenerate,

red-giant model cores are degenerate and just beginning to be significantly affected by relativistic

effects, and there are substantial decreases of both degeneracy and relativistic effects caused by the

core helium flash that drives the large changes between the red-giant-tip model and the clump-giant

model.

Figure 2 compares results for the JNR integral calculated with equation (13) and precise nu-

merical integration of the non-relativistic limit of the J integral. The maximum relative differences

are 10−6.4 which reflects the maximum relative errors of the Harwood approximation for G(η).

Figure 3 compares results for the KNR integral calculated with equation (18) and precise

numerical integration of the non-relativistic limit of the K integral. The maximum relative dif-

ferences are 10−7.0 which reflects the maximum relative errors of the analytical derivative of the

Cody-Thacher approximation for F3/2(η).

Figure 4 compares series (see Sect. 6) and precise numerical-integration results for the J and

K integrals. For non-degenerate, relativistic conditions, the series are obviously far from their
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region of validity; the J series results are incorrect both in sign and order of magnitude and the K

series results are incorrect in order of magnitude. Furthermore, there are discontinuities between

the two series results employed for each integral. These discontinuities appear on the figures near

log g = 0 for log f > 1 and log f = 1 for log g > 0 corresponding to the locus of points where

η = ηlim ≡ max(3, 1/[2β]). On the other hand, the series results are accurate for the cases for

which they are designed; i.e., the non-relativistic case and the degenerate case (so long as the sign

of the KLVH value of A2 is corrected, see Sect. 6). In the non-relativistic limit the errors of the

J-series results are dominated by the errors (see Fig. 2) in the Harwood approximation for G(η),

and the errors in the K-series results are dominated by the errors (see Fig. 3) in the analytical

derivative of the Cody-Thacher approximation for F3/2(η).

Tables 1 through 6 show coefficients of approximations (eqs. [32] and [37]) for the J and K

integrals. These coefficients were derived using the least-squares procedure described in Section 4.

The orders of these fits were chosen to reduce the number of coefficients required to achieve a

given relative accuracy. For example, the terms proportional to ln2(1 + g) in equation (32) were

completely dropped and the terms proportional to ln(1 + g) in equation (37) were treated in low

order without significantly compromising the maximum relative errors of the fits. Figure 5 compares

these approximations for the J and K integrals with precise numerical-integration results. These

fits for the J and K integrals show good accuracy at low order and the maximum relative errors

decrease roughly by an order of magnitude each time the order is increased by 2 units. Because the

design of the fitting functions takes advantage of the availability of high-quality approximations

for the leading terms of the non-relativistic series, the errors of the J and K approximations are

small in the non-relativistic limit and identical to the corresponding errors in the J and K series.

Furthermore, the J and K approximations give reasonable errors for all f and g conditions and do

not have the discontinuities that are present for the series results for J and K.

7.2. Results in ρ and T

To give the results that are plotted as a function of density ρ and temperature T some context,

Figure 6 compares EOS quantities and the loci of several stellar interior models on the density-

temperature plane for solar metallicity. The high-density, low-temperature calculation limit indi-

cated in the figure is defined by

log ρlim = log ρ5 + (3/2) log(T/105) (54)

for log T < 6 and continued by the log T = 6 isotherm. The limit parameter of log ρ5 = 3.3 is

used for this figure to avoid regions where FreeEOS calculations currently do not converge. This

calculation limit roughly corresponds to a 0.1-M¯ model and can also be viewed as the approximate

limit of validity for FreeEOS calculations (see further discussion in Paper II). This same log ρ5 limit

parameter is also used for all other ρ, T figures in this paper.

Figure 7 shows the changes in pressure P and first adiabatic exponent Γ1 caused by large-scale
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changes in the way that exchange is treated in FreeEOS. The effect of the exchange interaction itself

are substantial (changes larger than 0.1 in ln P and Γ1) for the low temperatures and high densities

that occur in the envelopes of extreme lower-main-sequence stars. The errors in the linear inversion

approximation for the exchange transformation are also substantial for the same conditions. The

errors in EOS results for the non-relativistic approximation for exchange are small; the maximum

EOS errors of this approximation are 10−2.9 for ln P and 10−3.7 for Γ1.

Figure 8 shows Γ1 and the same differences as in Figure 7 for the locus of points in a (fixed)

solar model. The solar effect of the exchange interaction is small but still significant (in light

of the precise acoustical frequency inversion data available for the sun, Basu et al. 2003). The

errors of the linear inversion approximation for the exchange transformation and the errors of the

non-relativistic approximation for exchange are both negligible in the solar case.

Figure 9 shows the changes in pressure P and first adiabatic exponent Γ1 caused by changes

in the way that the J and K exchange integrals are approximated. The EOS errors caused by

the series approximations to J and K are small although the expected (see Fig. 4) discontinuity

in the results near the onset of relativistic degeneracy is apparent. The EOS errors caused by the

recommended second-order fit of J and K are negligible.

8. Discussion

Both the series approximations (Sect. 6) and the fits to the J and K exchange integrals

(eqs. [32] and [37] and Tables 1 through 6) have errors which are ideally distributed for EOS

calculations. The series and fits have negligible errors in the non-relativistic limit (Figs. 4 and 5)

right where the EOS effects of exchange are the strongest (Fig. 7). The EOS effects of exchange

drop off rapidly with increasing relativity which has two important effects. (1) The maximum

effects of relativistic exchange on the EOS barely exceeds 10−3. Since the term proportional to

β2K in equation (21) is part of this relativistic exchange, this means the EOS differences between

the Kapusta exchange formulation (which includes this term) and the KLVH exchange formulation

(which drops this term) should be minor. (2) The errors in both the series and fit results to the

J and K integrals for relativistic conditions propagate only weakly to the relativistic EOS results,

and the associated maximum errors in the EOS results are negligible as a result (Fig. 9). Thus, the

exchange series has been used as the basis of the exchange treatment for version 1.4.0 of FreeEOS

and all previous versions. The actual motivation for upgrading from the series to the lowest-order

exchange fit results for version 1.5.0 of FreeEOS was the removal of the small discontinuity in

the series treatment which sometimes caused trouble in the final stages of the Newton-Raphson

iterations used in FreeEOS. The actual difference in results (not illustrated) between version 1.4.0

and 1.5.0 of FreeEOS are negligible. Furthermore, since the EOS errors associated with this lowest-

order fit are already negligible from today’s perspective, there is no benefit to using the higher-order

exchange integral approximations at the present time. Thus, these higher-order approximations are

reserved for possible future need where precision requirements might be higher than the present.
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One uncertainty in all free-energy treatments of exchange is the method used to transform

from ln ZX in the grand canonical partition function to FX in the free-energy. The linear inversion

approximation (eq. [50]) evidently has large errors (Fig. 7) for the conditions in the envelopes of

extreme lower-main-sequence models so I do not recommend it in general although it does give

reliable results for the solar case (Fig. 8). Another alternative is to numerically calculate the

exchange transformation using the approximations given by equations (47) and (48). This approx-

imate numerical transformation gives a smooth transition between asymptotically correct results

for low degeneracy and asymptotically correct results for high degeneracy (Sect. 5). Preliminary

comparisons with detailed OPAL calculations (which are based on the grand canonical partition

function and which are thus not subject to this transformation uncertainty) indicate the approx-

imate numerical transformation also gives reasonably reliable results at intermediate degeneracy.

Accordingly, the option to use this transformation has been part of the EOS1 option suite for all

FreeEOS versions.

9. Conclusions

This paper has presented the implementation of the exchange effect for FreeEOS, a software

library which is suitable for calculating the EOS for stellar-interior conditions. This implementation

is based on the equation (21) for the exchange effect in the grand canonical partition function. The

J and K integrals that occur in that equation have been approximated by the fits described by

equations 32 and 37 and Tables 1 through 6. As of version 1.5.0 of FreeEOS, the EOS1 option suite

employs the second-order version of those fits. The associated EOS errors (Fig. 9) are negligible

by today’s standards so the higher-order approximations are reserved for potential future use. For

versions of FreeEOS prior to 1.5.0, the EOS1 option suite has employed the series described in

Section 6 which suffered from a small discontinuity in EOS results (Fig. 9) which would some-

times interfere with the final stages of the Newton-Raphson iterations used in FreeEOS to find the

solution.

FreeEOS is a free-energy based EOS so the result in the grand canonical partition function

given by equation (21) requires a non-linear transformation to the equivalent free-energy exchange

effect. I have developed an efficient numerical approximation for this transformation which should

provide accurate results for both low degeneracy and high degeneracy with a smooth transition

between the two limits.

The FreeEOS software library is licensed under the GPL and is freely downloadable from

http://freeeos.sourceforge.net/.

I thank Forrest Rogers and Fritz Swenson for many useful discussions, drawing my attention

to the importance of the exchange effect, and sharing the code for the Harwood approximation for

G(η); Santi Cassisi for providing representative model calculations and for his friendly encourage-
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ment of my FreeEOS work; Ben Dorman and Don VandenBerg for helping to arouse my original

interest in the EOS problem for stellar interiors; and Richard Stallman, Linus Torvalds, and many

other programmers for the GNU/Linux computer operating system and accompanying tools that

have made it practical to develop the FreeEOS code on personal computers. The figures of this

paper have been generated with the PLplot (http://www.plplot.org) scientific plotting package.
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Fig. 1.— A comparison of the loci of stellar-interior models as a function of the degeneracy pa-

rameter f and the relativity parameter g. The models (Cassisi 2005) were calculated for solar

metallicity using the EOS1 option suite of FreeEOS and the stellar-evolution code that has been

described in Pietrinferni, et al. (2004). The labels of ‘0.1”, ‘0.3”, ‘1.0”, ‘RGT”, and ‘CG” respec-

tively indicate main-sequence models of 0.1, 0.3, and 1.0 M¯ and models of 1.0 M¯ evolved to the

tip of the red-giant branch and to the initial clump-giant phase (zero-age horizontal branch of solar

metallicity).

Fig. 2.— Differences of the JNR integral as a function of the degeneracy parameter f . The

differences are between equation 13 evaluated with the Harwood approximation to G(η) and the

non-relativistic limit of the J integral evaluated with precise numerical integration.

Fig. 3.— Differences of the KNR integral as a function of the degeneracy parameter f . The

differences are between equation 18 evaluated with the analytical derivative of the Cody-Thacher

approximation and the non-relativistic limit of the K integral evaluated with precise numerical

integration.

Fig. 4.— Differences of exchange integrals as a function of the degeneracy parameter f and the

relativity parameter g. For both the J and K integrals, the differences are between series approxi-

mations as described in Section 6 and precise numerical integration.

Fig. 5.— Differences of exchange integrals as a function of the degeneracy parameter f and the

relativity parameter g. The J-integral differences are between results calculated with equation (32)

using coefficients from Tables 1 through 3 and results calculated with precise numerical integration.

The K-integral differences are between results calculated with equation (37) using coefficients from

Tables 4 through 6 and results calculated with precise numerical integration.

Fig. 6.— A comparison of EOS quantities and loci of model stellar interiors as a function of density

and temperature at solar metallicity. The thin short-dashed line indicates where the radiative and

gas pressures are equal, the boundary between the radiation-dominated and matter-dominated

EOS. The thin dot-dashed line indicates where log g = 0, the boundary between where the free

electrons are non-relativistic and relativistic. The thin long-dashed line indicates where log f = 0,

the boundary between where the free electrons are non-degenerate and degenerate. The thin solid

lines indicate the middle of important ionization and dissociation zones. The ‘He+”, ‘He”, ‘H”,

and ‘H2” labels respectively correspond to where half the helium is singly ionized or neutral and

where half the hydrogen is in neutral monatomic form or in the diatomic molecular form. The

medium thickness solid line indicates the current high-density, low-temperature calculation limit

for FreeEOS (see text). The thick solid lines indicate the ρ, T loci of the same solar-metallicity

model stellar interiors that were plotted in Figure 1. The labels of ‘0.1”, ‘0.3”, ‘1.0”, ‘RGT”, and

‘CG” respectively indicate main-sequence models of 0.1, 0.3, and 1.0 M¯ and models of 1.0 M¯

evolved to the tip of the red-giant branch and to the initial clump-giant phase (zero-age horizontal

branch of solar metallicity).
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Fig. 7.— Differences of pressure P and first adiabatic exponent Γ1 as a function of the degeneracy

parameter f and the relativity parameter g. In all cases the differences have been generated between

comparison EOS calculations with the indicated modification to the EOS1 option suite and reference

EOS calculations with the unmodified EOS1 option suite. For the “No exchange” differences the

comparison calculations have been done with the EOS1 option suite modified to drop the exchange

effect (see Sect. 6). For the “Linear exchange” differences the comparison calculations have been

done with the the EOS1 option suite modified to use the linear-inversion approximation (see Sect. 6)

to transform between ln ZX and FX . For the “Non-relativistic exchange” differences the comparison

calculations have been done with the EOS1 option suite modified to replace equation (21) by

equation (51), the non-relativistic limit of that equation.

Fig. 8.— The first adiabatic exponent Γ1 and differences of first adiabatic exponent Γ1, pressure P ,

and square of the sound speed, v2
s = PΓ1/ρ as a function of the (fixed) locus of ρ, T , and abundance

points within a solar model. The differences are calculated identically to those of Figure 7. The ‘No

exchange” differences are indicated by solid lines, the ‘Linear exchange” differences are indicated

by short-dashed lines, and the ‘Non-relativistic exchange” differences are indicated by long-dashed

lines.

Fig. 9.— Differences of pressure P and first adiabatic exponent Γ1 as a function of the degeneracy

parameter f and the relativity parameter g. In all cases the differences have been generated

between comparison EOS calculations with the indicated modification to the EOS1 option suite

and reference EOS calculations with the EOS1 option suite modified to use the most accurate fits

for the J and K integrals (i.e. the sixth-order fit for J and the seventh-order fit for K). For the

“Series exchange” differences the comparison calculations have been done with the EOS1 option

suite modified to use the series approximations for J and K discussed in Section 6. For the ‘Second-

order exchange approximation” differences the comparison calculations have been done with the

unmodified EOS1 option suite (i.e., using the second-order fits for J and K).
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Table 1: Second-order fitting coefficients for J

m Ĵm,0 Ĵm,1 Ĵm,2

0 34.8358213 6.1265167 0.8600275

1 86.1918396 25.7316016 5.6471122

2 51.5419186 29.3774454 7.0535536

m Ĵ ′
m,0 Ĵ ′

m,1 Ĵ ′
m,2

0 33.2562696 31.5537757 6.8170355

1 66.7030494 65.6524569 14.8834241

2 28.4278181 30.6499630 8.0074649

m Ĵ ′′
m,0 Ĵ ′′

m,1 Ĵ ′′
m,2

0 7.6128464 2.7809264 2.4421025

1 16.9077576 8.2810716 6.7537105

2 7.1078540 9.0118836 1.1701926

Note. — This fit has M = N = M ′ = N ′ = M ′′ =

N ′′ = 2 and a maximum relative fitting error of 10−2.3.
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Table 2: Fourth-order fitting coefficients for J

m Ĵm,0 Ĵm,1 Ĵm,2

0 56.2805336 1.4600744 0.8040612

1 155.6222406 -38.3239264 10.8897054

2 83.5532182 28.8234751 7.0883559

m Ĵ ′
m,0 Ĵ ′

m,1 Ĵ ′
m,2 Ĵ ′

m,3 Ĵ ′
m,4

0 5.6437776 72.0785970 105.3785812 46.7695962 6.8234346

1 174.7225632 700.7413357 598.6273693 198.3020460 28.4677241

2 1174.0556985 1553.6277210 854.7360263 291.6944973 43.6666247

3 69.7350999 461.3841453 494.9380271 200.3802976 31.6890797

4 -19.1101716 32.3236302 87.5200915 47.0467342 8.0006636

m Ĵ ′′
m,0 Ĵ ′′

m,1 Ĵ ′′
m,2 Ĵ ′′

m,3 Ĵ ′′
m,4

0 28.6410004 165.6488584 274.3616284 -7.8112104 7.6299746

1 108.8331950 1460.9695944 848.1550036 -24.4941518 23.9006008

2 144.3375035 2059.8613336 932.1227056 -37.9448618 32.1617806

3 94.8689197 649.1216512 513.4043189 -49.7713793 31.8665472

4 15.7800513 43.7140906 40.9849434 10.9901399 3.4726043

Note. — This fit has M = N = 2, M ′ = N ′ = M ′′ = N ′′ = 4, and a maximum relative fitting

error of 10−3.1.
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Table 3: Sixth-order fitting coefficients for J

m Ĵm,0 Ĵm,1 Ĵm,2 Ĵm,3

0 77.7223322 15.1130448 -2.6865083 0.7914812

1 329.9690751 -1711.5422468 1199.9753651 -73.9603649

2 339.1739022 778.5679695 54.6086181 14.3235218

3 115.5562291 74.2173982 31.4786125 7.0902001

m Ĵ ′
m,0 Ĵ ′

m,1 Ĵ ′
m,2 Ĵ ′

m,3

Ĵ ′
m,4 Ĵ ′

m,5 Ĵ ′
m,6

0 -5.4000121 146.7136763 411.6203402 441.1299352

232.4649446 61.5101678 6.8247249

1 5695.7957148 -7092.1165083 -13101.9904352 -2447.2072200

1014.6845310 368.7097096 42.0150160

2 11216.4052787 28977.5973434 27389.3394169 13360.4808816

4202.0496258 953.5922014 107.4877403

3 -5004.0576957 -17432.3188130 -4881.7422341 7561.9107837

4667.0296065 1274.5396464 149.2296305

4 -2978.6276336 -6011.6709017 -4714.8750809 776.1294503

2627.0527294 942.4763969 113.1130650

5 -990.8463971 -1902.4091931 -1278.8279881 974.1793642

1238.7406226 392.2869249 48.0123563

6 -61.0768342 -3.5689832 243.7667578 349.9756271

213.4913981 63.9909089 8.0000291

m Ĵ ′′
m,0 Ĵ ′′

m,1 Ĵ ′′
m,2 Ĵ ′′

m,3

Ĵ ′′
m,4 Ĵ ′′

m,5 Ĵ ′′
m,6

0 76.9669717 4196.5960409 -14690.7086472 -11483.9761233

273.9069680 925.7506712 -78.6975448

1 403.8465365 13947.6028263 -10481.5778168 -8157.4031117

7797.1164005 4392.2634040 -351.4769520

2 877.1286674 6386.7560942 -10134.5858478 4139.5945610

19163.2886021 7721.2581060 -595.0931958

3 1009.2265882 -8509.1033779 -31981.8034156 -2456.0463932

15475.1207915 6649.2247613 -468.7739531

4 625.3080827 -5068.4236377 -14050.4153207 -4921.9776737

5080.5195211 2808.9762429 -177.7836871

5 215.1119554 -116.6120752 220.8791890 -980.5436208

1423.8520116 365.3071337 4.6112748

6 23.7703342 60.5395737 138.3380767 49.8463981

107.3457476 20.1232319 3.3403911

Note. — This fit has M = N = 3, M ′ = N ′ = M ′′ = N ′′ = 6, and a maximum

relative fitting error of 10−4.1.
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Table 4: Second-order fitting coefficients for K

m K̂m,0 K̂m,1 K̂m,2

0 9.4150106 9.0399638 2.6135398

1 19.3949179 18.4548660 5.2690297

2 10.5602307 9.8746980 2.8270724

m K̂ ′
m,0

0 0.2219891

Note. — This fit has M = N = 2, M ′ = N ′ = 0, and

a maximum relative fitting error of 10−2.5.
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Table 5: Fourth-order fitting coefficients for K

m K̂m,0 K̂m,1 K̂m,2 K̂m,3 K̂m,4

0 15.9616640 31.6264744 30.8574217 14.3505923 2.6124722

1 65.2137462 128.5287114 124.7941936 58.0368244 10.5422097

2 100.0779497 196.2665661 189.7875295 88.3645023 16.0646752

3 68.9805226 134.3128503 128.9954761 59.8503499 10.8120877

4 18.1027203 35.0222537 33.5069500 15.5482948 2.8284087

m K̂ ′
m,0

0 0.7085843

1 0.4384647

Note. — This fit has M = N = 4, M ′ = 1, N ′ = 0, and a maximum relative fitting error of

10−3.8.
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Table 6: Seventh-order fitting coefficients for K

m K̂m,0 K̂m,1 K̂m,2 K̂m,3

K̂m,4 K̂m,5 K̂m,6 K̂m,7

0 25.7842747 89.6532756 178.2531213 220.2391122

171.7202945 82.5677241 22.2022652 2.6124292

1 182.7491698 634.2399245 1258.5795649 1552.0338194

1209.2423616 580.9794546 156.3493557 18.3854785

2 556.4181655 1927.2484177 3816.1015364 4696.8562020

3655.4138590 1754.9056233 472.5034538 55.5290929

3 938.5331301 3244.9585385 6413.7471264 7879.1826389

6129.2942522 2940.4105339 792.5785975 93.0966512

4 960.7519007 3313.2266232 6532.0560019 8002.6234013

6214.1077832 2977.6103202 802.1268594 94.1489718

5 583.5117994 2009.3901546 3952.7213124 4839.3366977

3753.8298340 1798.9814958 485.3881563 56.9861334

6 200.4860761 688.3557251 1350.3664972 1647.8294240

1275.4438080 610.3316895 164.4720854 19.2907139

7 29.4157259 100.8001430 197.3155508 240.4593766

185.9307018 89.0447118 24.0404251 2.8284359

m K̂ ′
m,0

0 1.0175489

1 0.5914964

Note. — This fit has M = N = 7, M ′ = 1, N ′ = 0, and a maximum relative fitting

error of 10−4.6.
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